【题目】已知二次函数
满足![]()
(1)求
的解析式;(2)作出函数
的图像,并写出其单调区间;
(3)求
在区间
(
)上的最小值。
【答案】(1)
;(2)单调递增区间为
,
; 单调递减区间为
,
;(3)
时,
最小值为
;
时,
最小值为
;
时,最小值为
。
【解析】试题分析:(1)换元法得到
,代入
=
;(2)根据表达式,零点分区间,分段画出图像即可;(3)根据第一问的表达式这是轴定区间动的问题,讨论轴和区间的关系即可。
(1)令
则
,
=
=![]()
(2)
![]()
由图像可知:|
|的单调递增区间为
;
单调递减区间为
,
(3)
=![]()
开口向上,对称轴为![]()
当
时,
在
上为增函数
所以
时y有最小值为
;
当
,即
时,
在
上先减后增,
所以
时y有最小值为![]()
当
,即
时,
在
上为减函数
所以
时y有最小值为
;
综上所述:
时,
最小值为
;
时,
最小值为
;
时,最小值为
。
科目:高中数学 来源: 题型:
【题目】已知四棱锥PABCD的底面ABCD是矩形,PA⊥底面ABCD,点E、F分别是棱PC、PD的中点,则
①棱AB与PD所在直线垂直;
②平面PBC与平面ABCD垂直;
③△PCD的面积大于△PAB的面积;
④直线AE与直线BF是异面直线.
以上结论正确的是________.(写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H.将△DEF沿EF折到△D′EF的位置.
![]()
(1)证明:AC⊥HD′;
(2)若AB=5,AC=6,AE=
,OD′=2
,求五棱锥D′ABCFE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xln x-(x-1)(ax-a+1)(a∈R).
(1)若a=0,判断函数f(x)的单调性;
(2)若x>1时,f(x)<0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布
.
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在
之外的零件数,求
;
(2)一天内抽检零件中,如果出现了尺寸在
之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
下面是检验员在一天内抽取的16个零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得
,
,其中
为抽取的第
个零件的尺寸,
.
用样本平均数
作为
的估计值
,用样本标准差
作为
的估计值
,利用估计值判断是否需对当天的生产过程进行检查?剔除
之外的数据,用剩下的数据估计
和
(精确到0.01).
附:若随机变量
服从正态分布
,则
,
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com