【题目】已知椭圆
,
是它的上顶点,点
各不相同且均在椭圆上.
(1)若
恰为椭圆长轴的两个端点,求
的面积;
(2)若
,求证:直线
过一定点;
(3)若
,
的外接圆半径为
,求
的值.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)
为曲线
上的动点,点
在线段
上,且满足
,求点
的轨迹
的直角坐标方程;
(2)设点
的极坐标为
,点
在曲线
上,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午
这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段
记作区间
,
记作
,
记作
,
记作
,例如:10点04分,记作时刻64.
![]()
(1)估计这600辆车在
时间段内通过该收费点的时刻的平均值
同一组中的数据用该组区间的中点值代表
;
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在
之间通过的车辆数为
,求
的分布列与数学期望;
(3)由大数据分析可知,车辆在每天通过该收费点的时刻服从正态分布
,其中
可用这600辆车在
之间通过该收费点的时刻的平均值近似代替,
可用样本的方差近似代替
同一组中的数据用该组区间的中点值代表
,已知大年初五全天共有1000辆车通过该收费点,估计在
之间通过的车辆数
结果保留到整数
.
参考数据:若
,则
;
;
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是各项均为正数的等比数列,
是等差数列,且
.
(I)求
和
的通项公式;
(II)设数列
满足
,求
;
(III)对任意正整数
,不等式
成立,求正数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩形
,
,
,将
沿对角线
进行翻折,得到三棱锥
,则在翻折的过程中,有下列结论:
①三棱锥
的体积最大值为
;
②三棱锥
的外接球体积不变;
③三棱锥
的体积最大值时,二面角
的大小是
;
④异面直线
与
所成角的最大值为
.
其中正确的是( )
A.①②④B.②③C.②④D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园为了美化环境和方便顾客,计划建造一座圆弧形拱桥,已知该桥的剖面如图所示,共包括圆弧形桥面
和两条长度相等的直线型路面
、
,桥面跨度
的长不超过
米,拱桥
所在圆的半径为
米,圆心
在水面
上,且
和
所在直线与圆
分别在连结点
和
处相切.设
,已知直线型桥面每米修建费用是
元,弧形桥面每米修建费用是
元.
![]()
(1)若桥面(线段
、
和弧
)的修建总费用为
元,求
关于
的函数关系式;
(2)当
为何值时,桥面修建总费用
最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设n为正整数,集合A=
.对于集合A中的任意元素
和
,记
M(
)=
.
(Ⅰ)当n=3时,若
,
,求M(
)和M(
)的值;
(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素
,当
相同时,M(
)是奇数;当
不同时,M(
)是偶数.求集合B中元素个数的最大值;
(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素
,
M(
)=0.写出一个集合B,使其元素个数最多,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,函数f(x)=2cosxsin(x﹣A)+sinA(x∈R)在x=
处取得最大值.
(1)当
时,求函数f(x)的值域;
(2)若
且sinB+sinC=
,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的最小正周期为
,将
的图像向右平移
个单位长度后得到函数
,
的图像关于
轴对称,且
.
(1)求函数
的解析式;
(2)设函数
,若函数
的图像在
上恰有2个最高点,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com