【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)
为曲线
上的动点,点
在线段
上,且满足
,求点
的轨迹
的直角坐标方程;
(2)设点
的极坐标为
,点
在曲线
上,求
面积的最大值.
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形
中,
,
,点
在
上,且
,将
沿
折起,使得平面
平面
(如图2).
为
中点
![]()
(1)求证:
;
(2)求四棱锥
的体积;
(3)在线段
上是否存在点
,使得
平面
?若存在,求
的值;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网络和智能手机的普及与快速发展,许多可以解答各学科问题的搜题软件走红.有教育工作者认为:网搜答案可以起到拓展思路的作用,但是对多数学生来讲,容易产生依赖心理,对学习能力造成损害.为了了解网络搜题在学生中的使用情况,某校对学生在一周时间内进行网络搜题的频数进行了问卷调查,并从参与调查的学生中抽取了男、女学生各50人进行抽样分析,得到如下样本频数分布表:
![]()
将学生在一周时间内进行网络搜题频数超过20次的行为视为“经常使用网络搜题”,不超过20次的视为“偶尔或不用网络搜题”.
(1)根据已有数据,完成下列
列联表(单位:人)中数据的填写,并判断是否在犯错误的概率不超过1%的前提下有把握认为使用网络搜题与性别有关?
![]()
(2)将上述调查所得到的频率视为概率,从该校所有参与调查的学生中,采用随机抽样的方法每次抽取一个人,抽取4人,记经常使用网络搜题的人数为
,若每次抽取的结果是相互独立的,求随机变量
的分布列和数学期望.
参考公式:
,其中
.
参考数据:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数,
),已知直线
的方程为
.
(1)设
是曲线
上的一个动点,当
时,求点
到直线
的距离的最小值;
(2)若曲线
上的所有点均在直线
的右下方,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以
为首项的数列
满足:![]()
(1)当
,
时,求数列
的通项公式;
(2)当
,
时,试用
表示数列
前100项的和
;
(3)当
(
是正整数),
,正整数
时,判断数列
,
,
,
是否成等比数列?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《朗读者》是一档文化情感类节目,以个人成长、情感体验、背景故事与传世佳作相结合的方式,选用精美的文字,用最平实的情感读出文字背后的价值,深受人们的喜爱.为了了解人们对该节目的喜爱程度,某调查机构随机调查了
,
两个城市各100名观众,得到下面的列联表.
非常喜爱 | 喜爱 | 合计 | |
| 60 | 100 | |
| 30 | ||
合计 | 200 |
完成上表,并根据以上数据,判断是否有
的把握认为观众的喜爱程度与所处的城市有关?
附参考公式和数据:
(其中
).
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax2+bx+c(a≠0),满足条件f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)当x≥0时,f(x)≥mx-3恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com