【题目】已知椭圆
的离心率为
,左、右焦点分别为
、
,
为椭圆上异于长轴端点的点,且
的最大面积为
.
(1)求椭圆
的标准方程
(2)若直线
是过点
点的直线,且
与椭圆
交于不同的点
、
,是否存在直线
使得点
、
到直线
,的距离
、
,满足
恒成立,若存在,求
的值,若不存在,说明理由.
【答案】(1)
;(2)存在,且
.
【解析】
(1)根据题意列出有关
、
、
的方程组,求出这三个量的值,即可得出椭圆
的标准方程;
(2)设直线
的方程为
,设点
、
,将直线
的方程与椭圆方程联立,并列出韦达定理,由
,得出
,通过化简计算并代入韦达定理计算出
的值,即可得出直线
的方程,即可说明直线
的存在性.
(1)设椭圆的焦距为
,且
的最大面积为
,则
,
由已知条件得
,解得
,因此,椭圆
的标准方程为
;
(2)当直线
不与
轴重合时,设直线
的方程为
,设点
、
,
将直线
的方程与椭圆方程联立
,消去
并整理得
,
,
由韦达定理得
,
.
,即
,即
,
整理得
;
当直线
与
轴重合时,则直线
与椭圆
的交点为左、右顶点,设点
、
,
,
,由
,得
,解得
.
综上所述,存在直线
,使得
.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系.己知直线
的直角坐标方程为
,曲线C的极坐标方程为
.
(1)设t为参数,若
,求直线
的参数方程和曲线C的直角坐标方程;
(2)已知:直线
与曲线C交于A,B两点,设
,且
,
,
依次成等比数列,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某部门参加职业技能测试的2000名员工中抽取100名员工,将其成绩(满分100分)按照[50,60),[60,70),[70,80),[80,90),[90,100)分成5组,得到如图所示的频率分布直方图.
![]()
(1)估计该部门参加测试员工的成绩的众数中位数;
(2)估计该部门参加测试员工的平均成绩;
(3)若成绩在80分及以上为优秀,请估计该部门2000名员工中成绩达到优秀的人数为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:
![]()
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:
![]()
(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品
”的规定?
(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值
近似满足
,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面四边形ABCD中, AB=2,BD=
,AB⊥BC,∠BCD=2∠ABD,△ABD的面积为2.
![]()
(1)求AD的长;
(2)求△CBD的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
为奇函数.
(1)求常数
的值;
(2)判断并用定义法证明函数的单调性;
(3)函数
的图象由函数
的图象先向右平移
个单位,再向上平移
个单位得到,写出
的一个对称中心,若
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com