精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(mx+n)e-x(m,n∈R,e是自然对数的底)
(1)若函数f(x)在点(1,f(1))处的切线方程为x+ey-3=0,试确定函数f(x)的单调区间;
(2)①当n=-1,m∈R时,若对于任意x∈[
12
,2]
,都有f(x)≥x恒成立,求实数m的最小值;
②当m=n=1时,设函数g(x)=xf(x)+tf'(x)+e-x(t∈R),是否存在实数a,b,c∈[0,1],使得g(a)+g(b)<g(c)?若存在,求出t的取值范围;若不存在,说明理由.
分析:(1)求导函数,利用函数f(x)在点(1,f(1))处的切线方程为x+ey-3=0,可得f(1)=
2
e
,f′(1)=-
1
e
,从而可得函数的解析式,利用导数的正负可得函数的单调区间;
(2)①对于任意x∈[
1
2
,2]
,都有f(x)≥x恒成立,等价于m≥ex+
1
x
,对于任意x∈[
1
2
,2]
恒成立,构造函数可得φ(x)的最大值是φ(
1
2
)和φ(2)中的较大的一个,由此可求m的最小值;
②假设存在a,b,c∈[0,1],使得g(a)+g(b)<g(c),则问题等价于2g(x)min<g(x)max,1求导函数,分类讨论求出函数的最值,即可求得结论.
解答:解:(1)由题意,f′(x)=
-mx+(m-n)
ex

∵函数f(x)在点(1,f(1))处的切线方程为x+ey-3=0
∴f(1)=
2
e
,f′(1)=-
1
e

m+n
e
=
2
e
-n
e
=-
1
e

∴m=1,n=1
∴f(x)=(x+1)e-x,f′(x)=-
x
ex

令f′(x)>0,可得x<0,令f′(x)<0,可得x>0,
∴f(x)在(0,+∞)上单调递减,在(-∞,0)上单调递增;
(2)①当n=-1,m∈R时,
mx-1
ex
≥x
,即m≥ex+
1
x

对于任意x∈[
1
2
,2]
,都有f(x)≥x恒成立,等价于m≥ex+
1
x
,对于任意x∈[
1
2
,2]
恒成立
记φ(x)=ex+
1
x
,则φ′(x)=ex-
1
x2

记h(x)=ex-
1
x2
,则h′(x)=ex+
2
x3
>0对于任意x∈[
1
2
,2]
恒成立,
∴h(x)=ex-
1
x2
[
1
2
,2]
上单调递增
h(
1
2
)=
e
-4<0,h(2)=e2-
1
4
>0

∴φ′(x)=ex-
1
x2
[
1
2
,2]
上有唯一的零点x0
∴x∈(
1
2
,x0),φ′(x)<0,x∈(x0,2),φ′(x)>0
∴φ(x)在(
1
2
,x0)上单调递减,在(x0,2)上单调递增
∴φ(x)的最大值是φ(
1
2
)和φ(2)中的较大的一个
∴m≥φ(
1
2
)且m≥φ(2)
∴m≥
e
+2且m≥e2+
1
2

∴m的最小值为e2+
1
2

②假设存在a,b,c∈[0,1],使得g(a)+g(b)<g(c),则问题等价于2g(x)min<g(x)max
∵g(x)=xf(x)+tf'(x)+e-x=
x2+(1-t)x+1
ex
,∴g′(x)=
-(x-t)(x-1)
ex

当t≥1时,在[0,1]上g′(x)≤0,∴g(x)在[0,1]上单调递减,∴2g(1)<g(0),∴2×
3-t
e
<1,∴t>3-
e
2
>1

当t≤0时,在[0,1]上g′(x)≥0,∴g(x)在[0,1]上单调递增,∴2g(0)<g(1),∴2<
3-t
e
,∴t<3-2e<0;
当0<t<1时,在[0,t)上,g′(x)<0,∴g(x)在[0,t)上单调递减,在(t,1]上,g′(x)>0,∴g(x)在(t,1]上单调递增,∴2g(t)<max{g(0),g(1)}
∴2×
t+1
et
<max1,
3-t
e

由(1)知f(t)=
t+1
et
在[0,1]上单调递减,故
t+1
et
4
e

3-t
e
3
e

∴2×
t+1
et
<max1,
3-t
e
无解
综上所述,存在t∈(-∞,3-2e)∪(3-
e
2
,+∞),使得命题成立.
点评:本题考查导数知识的运用,考查函数的单调性,考查恒成立问题,考查分类讨论的数学思想,正确求导,合理分类是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案