【题目】在平面直角坐标系
中,曲线
,以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程和曲线
的直角坐标方程;
(2)设点
在曲线
上,直线
交曲线
于点
,求
的最小值.
科目:高中数学 来源: 题型:
【题目】在椭圆
上任取一点
(
不为长轴端点),连结
、
,并延长与椭圆
分别交于点
、
两点,已知
的周长为8,
面积的最大值为
.
(1)求椭圆
的方程;
(2)设坐标原点为
,当
不是椭圆的顶点时,直线
和直线
的斜率之积是否为定值?若是定值,请求出这个定值;若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,过焦点且垂直于
轴的直线被椭圆
所截得的弦长为
.
(1)求椭圆
的标准方程;
(2)若经过点
的直线
与椭圆
交于不同的两点
是坐标原点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
、
与平面
、
满足
,
,
,则下列命题中正确的是( )
A.
是
的充分不必要条件
B.
是
的充要条件
C.设
,则
是
的必要不充分条件
D.设
,则
是
的既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为
(1+cos2θ)=8sinθ.
(1)求曲线C的普通方程;
(2)直线l的参数方程为
,t为参数直线
与y轴交于点F与曲线C的交点为A,B,当|FA||FB|取最小值时,求直线
的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两个商场同时出售一款西门子冰箱,其中甲商场位于老城区中心,乙商场位于高新区.为了调查购买者的年龄与购买冰箱的商场选择是否具有相关性,研究人员随机抽取了1000名购买此款冰箱的用户作调研,所得结果如表所示:
50岁以上 | 50岁以下 | |
选择甲商场 | 400 | 250 |
选择乙商场 | 100 | 250 |
(1)判断是否有
的把握认为购买者的年龄与购买冰箱的商场选择具有相关性;
(2)由于乙商场的销售情况未达到预期标准,商场决定给冰箱的购买者开展返利活动具体方案如下:当天卖出的前60台(含60台)冰箱,每台商家返利200元,卖出60台以上,超出60台的部分,每台返利50元.现将返利活动开展后15天内商场冰箱的销售情况统计如图所示:与此同时,老张得知甲商场也在开展返利活动,其日返利额的平均值为11000元,若老张将选择返利较高的商场购买冰箱,请问老张应当去哪个商场购买冰箱
![]()
附:
,其中
.
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com