【题目】已知函数f(x)=2sinxcosx+2
x.
(1)求函数f(x)的最小正周期;
(2)当
时,求函数f(x)的最大值和最小值.
【答案】
(1)解:函数f(x)=2sinxcosx+2
x.
化简可得:f(x)=sin2x+
cos2x=2sin(2x+
)+ ![]()
函数f(x)的最小正周期T=π.
(2)解:当
时,
那么:2x+
∈[﹣
,π],
则sin(2x+
)∈[
,1],
当2x+
=﹣
时,函数f(x)取得最小值为0.
当2x+
=
时,函数f(x)取得最大值为2+
.
∴函数f (x)的最小值为0,最大值为2
.
【解析】(1)利用二倍角,辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期;(2)当
时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最大值和最小值.
【考点精析】认真审题,首先需要了解三角函数的最值(函数
,当
时,取得最小值为
;当
时,取得最大值为
,则
,
,
).
科目:高中数学 来源: 题型:
【题目】在三棱锥P﹣ABC中,PA⊥平面ABC,AB=BC=AC=2,PA=
,E,F分别是PB,BC的中点,则EF与平面PAB所成的角等于( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)+B (A>0,ω>0,|φ|<
)的最大值为2
,最小值为﹣
,周期为π,且图象过(0,﹣
).
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣3x2+a(6﹣a)x+c.
(1)当c=19时,解关于a的不等式f(1)>0;
(2)若关于x的不等式f(x)>0的解集是(﹣1,3),求实数a,c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且过点
. ![]()
(1)求椭圆的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若
. (i) 求
的最值;
(ii) 求四边形ABCD的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影O为AC的中点,A1O=2,AB⊥BC,AB=BC=
点P在线段A1B上,且cos∠PAO=
,则直线AP与平面A1AC所成角的正弦值为 . ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于x的不等式ax﹣b<0的解集是(1,+∞),则关于x的不等式(ax+b)(x﹣3)>0的解集是( )
A.(﹣∞,﹣1)∪(3,+∞)
B.(1,3)
C.(﹣1,3)
D.(﹣∞,1)∪(3,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0)的离心率为
,左,右焦点分别是F1 , F2 , 以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上. (Ⅰ)求椭圆C的方程;
(Ⅱ)线段PQ是椭圆C过点F2的弦,且
=λ
.
(i)求△PF1Q的周长;
(ii)求△PF1Q内切圆面积的最大值,并求取得最大值时实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0)的离心率e=
,左顶点、上顶点分别为A,B,△OAB的面积为3(点O为坐标原点).
(1)求椭圆C的方程;
(2)若P、Q分别是AB、椭圆C上的动点,且
=λ
(λ<0),求实数λ的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com