【题目】如图,在四棱锥
中,底面
是梯形,
,
,
,
.
![]()
(1)证明:平面
平面
;
(2)若
与平面
所成的角为
,
,求点
到平面
的距离.
【答案】(1)证明见解析;(2)
.
【解析】
试题分析:(1)在
中,由余弦定理得
,根据勾股定理可证得
,因为
,所以
平面
,由面面垂直的判断定理可得平面
平面
;(2)取
的中点
,连接
,
,可得
,根据面面垂直的性质定理可得
平面
,找到
与平面
所成的角
,求得
,
,
,根据线面平行可得
到平面
的距离即为点
到平面
的距离,在三棱锥
中,根据等体积变换
即可求得点
到平面
的距离.
试题解析:(1)在
中,由余弦定理得
,
因为
,
,所以
,
所以
,即
,
又因为
,
,所以
平面
,
因为
平面
,所以平面
平面
.
(2)取
的中点
,连接
,
,因为
,所以
,由(Ⅰ)知平面
平面
,交线为
,所以
平面
,
由
,得
,
,
,因为
与平面
所成的角为
,所以
,得
,所以
,
,
因为
∥
,所以
∥平面
,故点
到平面
的距离即为点
到平面
的距离
,
在三棱锥
中,有
,即
,
求得
,所以点
到平面
的距离为
.
![]()
科目:高中数学 来源: 题型:
【题目】如图1,线段
的长度为
,在线段
上取两个点
,使得
,以
为一边在线段
的上方做一个正六边形,然后去掉线段
,得到图2中的图形;对图2中的最上方的线段
作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:
![]()
记第
个图形(图1为第1个图形)中的所有线段长的和为
,现给出有关数列
的四个命题:
①数列
是等比赞列;
②数列
是递增数列;
③存在最小的正数
,使得对任意的正整数
,都有
;
④存在最大的正数
,使得对任意的正整数
,都有
.
其中真命题的序号是__________. (请写出所有真命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=
;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为( )
A.①②
B.③④
C.①③
D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(cosωx﹣sinωx,sinωx),
=(﹣cosωx﹣sinωx,2
cosωx),设函数f(x)=
+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(
,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(
,0)求函数f(x)在区间[0,
]上的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高0.02万元,已知建筑第5层楼房时,每平方米建筑费用为0.8万元.
(1)若学生宿舍建筑为
层楼时,该楼房综合费用为
万元,综合费用是建筑费用与购地费用之和),写出
的表达式;
(2)为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?
【答案】(1)
;(2)学校应把楼层建成
层,此时平均综合费用为每平方米
万元
【解析】
由已知求出第
层楼房每平方米建筑费用为
万元,得到第
层楼房建筑费用,由楼房每升高一层,整层楼建筑费用提高
万元
,然后利用等差数列前
项和求建筑
层楼时的综合费用
;
设楼房每平方米的平均综合费用为
,则
,然后利用基本不等式求最值.
解:
由建筑第5层楼房时,每平方米建筑费用为
万元,
且楼房每升高一层,整层楼每平方米建筑费用提高
万元,
可得建筑第1层楼房每平方米建筑费用为:
万元.
建筑第1层楼房建筑费用为:
万元
.
楼房每升高一层,整层楼建筑费用提高:
万元
.
建筑第x层楼时,该楼房综合费用为:
.
;
设该楼房每平方米的平均综合费用为
,
则:
,
当且仅当
,即
时,上式等号成立.
学校应把楼层建成10层,此时平均综合费用为每平方米
万元.
【点睛】
本题考查简单的数学建模思想方法,训练了等差数列前n项和的求法,训练了利用基本不等式求最值,是中档题.
【题型】解答题
【结束】
20
【题目】已知
.
(1)求函数
的最小正周期和对称轴方程;
(2)若
,求
的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】五个人站成一排,求在下列条件下的不同排法种数:
(1)甲必须在排头;
(2)甲、乙相邻;
(3)甲不在排头,并且乙不在排尾;
(4)其中甲、乙两人自左向右从高到矮排列且互不相邻
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接
月
日的“全民健身日”,某大学学生会从全体男生中随机抽取
名男生参加
米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于
秒,则称为“好体能”.
![]()
(Ⅰ) 写出这组数据的众数和中位数;
(Ⅱ)要从这
人中随机选取
人,求至少有
人是“好体能”的概率;
(Ⅲ)以这
人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取
人,记
表示抽到“好体能”学生的人数,求
的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com