【题目】如图,在四棱锥
中,平面
平面ABCD,
是等边三角形,四边形ABCD是矩形,
,F为棱PA上一点,且
,M为AD的中点,四棱锥
的体积为
.
![]()
(1)若
,N是PB的中点,求证:平面
平面PCD;
(2)在(Ⅰ)的条件,求三棱锥
的体积.
科目:高中数学 来源: 题型:
【题目】某游戏公司对今年新开发的一些游戏进行评测,为了了解玩家对游戏的体验感,研究人员随机调查了300名玩家,对他们的游戏体验感进行测评,并将所得数据统计如图所示,其中
.
![]()
(1)求这300名玩家测评分数的平均数;
(2)由于该公司近年来生产的游戏体验感较差,公司计划聘请3位游戏专家对游戏进行初测,如果3人中有2人或3人认为游戏需要改进,则公司将回收该款游戏进行改进;若3人中仅1人认为游戏需要改进,则公司将另外聘请2位专家二测,二测时,2人中至少有1人认为游戏需要改进的话,公司则将对该款游戏进行回收改进.已知该公司每款游戏被每位专家认为需要改进的概率为
,且每款游戏之间改进与否相互独立.
(i)对该公司的任意一款游戏进行检测,求该款游戏需要改进的概率;
(ii)每款游戏聘请专家测试的费用均为300元/人,今年所有游戏的研发总费用为50万元,现对该公司今年研发的600款游戏都进行检测,假设公司的预算为110万元,判断这600款游戏所需的最高费用是否超过预算,并通过计算说明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本
与科技成本的投入次数
的关系是
=
.若水晶产品的销售价格不变,第
次投入后的年利润为
万元.①求出
的表达式;②问从今年算起第几年利润最高?最高利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知椭圆
上任意一点到其两个焦点
,
的距离之和等于
,焦距为2c,圆
,
,
是椭圆的左、右顶点,AB是圆O的任意一条直径,四边形
面积的最大值为
.
![]()
(1)求椭圆C的方程;
(2)如图,若直线
与圆O相切,且与椭圆相交于M,N两点,直线
与
平行且与椭圆相切于P(O,P两点位于
的同侧),求直线
,
距离d的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
到点
的距离比它到直线
距离小![]()
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)过点
作互相垂直的两条直线
,它们与(Ⅰ)中轨迹
分别交于点
及点
,且
分别是线段
的中点,求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率
与日产量
(万件)之间满足关系:
(
)已知每生产1万件合格的仪器可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.(注:次品率=次品数/生产量)
(1)试将生产这种仪器元件每天的盈利额
(万元)表示为日产量
(万件)的函数;
(2)当日产量为多少时,可获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点E在椭圆
上,以E为圆心的圆与x轴相切于椭圆C的右焦点
,与y轴相交于A,B两点,且
是边长为2的正三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知圆
,设圆O上任意一点P处的切线交椭圆C于M、N两点,试判断以
为直径的圆是否过定点?若过定点,求出该定点坐标,并直接写出
的值;若不过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com