精英家教网 > 高中数学 > 题目详情

【题目】窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一.图中的窗花是由一张圆形纸片剪去一个正十字形剩下的部分,正十字形的顶点都在圆周上.已知正十字形的宽和长都分别为xy(单位:dm)且xy,若剪去的正十字形部分面积为4dm2

1)求y关于x的函数解析式,并求其定义域;

2)现为了节约纸张,需要所用圆形纸片面积最小.当x取何值时,所用到的圆形纸片面积最小,并求出其最小值.

【答案】(1)y关于x的函数解析式,定义域为(02)

(2)当x,所用到的圆形纸片面积最小,最小值为

【解析】

1)利用正十字形面积可构造关于的等式,整理可得函数关系式;利用可解不等式求得定义域;(2)利用外接圆直径可得,利用基本不等式可求得的最小值及取得最小值时的取值,代入圆的面积公式即可求得面积的最小值.

1)由题意可得:,则:

,即

关于的解析式为,定义域为

2)设正十字形的外接圆的直径为

当且仅当,即时取等号

时,

正十字形外接圆面积:

即正十字形外接圆面积的最小值为:,此时

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:

根据以上数据,绘制了散点图.

观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为的相关系数.参考数据(其中):

(1)用反比例函数模型求关于的回归方程;

(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本;

(3)该企业采取订单生产模式(根据订单数量进行生产,即产品全部售出).根据市场调研数据,若该产品单价定为100元,则签订9千件订单的概率为0.8,签订10千件订单的概率为0.2;若单价定为90元,则签订10千件订单的概率为0.3,签订11千件订单的概率为0.7.已知每件产品的原料成本为10元,根据(2)的结果,企业要想获得更高利润,产品单价应选择100元还是90元,请说明理由.

参考公式:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:,相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数),以直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程是:

(1)求曲线的普通方程和直线的直角坐标方程.

(2)点是曲线上的动点,求点到直线距离的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国国际智能产业博览会(智博会)每年在重庆市举办一届,每年参加服务的志愿者分“嘉宾”、“法医”等若干小组,年底,来自重庆大学、西南大学、重庆医科大学、西南政法大学的500名学生在重庆科技馆多功能厅参加了“志愿者培训”,如图是四所大学参加培训人数的不完整条形统计图,现用分层抽样的方法从中抽出20人作为2019年中国国际智博会服务的志愿者.

(1)分别求出从重庆大学、西南大学、重庆医科大学、西南政法大学抽出的志愿者人数;

(2)若“嘉宾”小组的2名志愿者只能从重庆医科大学或西南政法大学抽出,求这2人分别来自不同大学的概率(结果用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数有两个不同的极值点

(1)求的取值范围;

(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线和动直线.直线交抛物线两点,抛物线处的切线的交点为.

1)当时,求以为直径的圆的方程;

2)求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018 年1月16日,由新华网和中国财经领袖联盟联合主办的2017中国财经年度人物评选结果揭晓,某知名网站财经频道为了解公众对这些年度人物是否了解,利用网络平台进行了调查,并从参与调查者中随机选出人,把这人分为 两类(类表示对这些年度人物比较了解,类表示对这些年度人物不太了解),并制成如下表格:

年龄段

岁~

岁~

岁~

岁~

人数

类所占比例

(1)若按照年龄段进行分层抽样,从这人中选出人进行访谈,并从这人中随机选出两名幸运者给予奖励.求其中一名幸运者的年龄在岁~岁之间,另一名幸运者的年龄在岁~岁之间的概率;(注:从人中随机选出人,共有种不同选法)

(2)如果把年龄在 岁~岁之间的人称为青少年,年龄在岁~岁之间的人称为中老年,则能否在犯错误的概率不超过的前提下认为青少年与中老年人在对财经年度人物的了解程度上有差异?

参考数据:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t(单位:分钟)满足:4≤t≤15N,平均每趟地铁的载客人数p(t)(单位:人)与发车时间间隔t近似地满足下列函数关系:,其中.

(1)若平均每趟地铁的载客人数不超过1500人,试求发车时间间隔t的值.

(2)若平均每趟地铁每分钟的净收益为(单位:元),问当发车时间间隔t为多少时,平均每趟地铁每分钟的净收益最大?井求出最大净收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的各项都是正数,若对于任意的正整数,存在,使得成等比数列,则称函数为“型”数列.

(1)若是“型”数列,且,求的值;

(2)若是“型”数列,且,求的前项和

(3)若既是“型”数列,又是“型”数列,求证:数列是等比数列.

查看答案和解析>>

同步练习册答案