【题目】已知椭圆
的两个焦点分别为
,短轴的两个端点分别为
.
(Ⅰ)若
为等边三角形,求椭圆
的方程;
(Ⅱ)若椭圆
的短轴长为
,过点
的直线
与椭圆
相交于
两点,且
,求直线
的方程.
【答案】(Ⅰ)
;(Ⅱ)
或
.
【解析】试题分析:(1)由
为等边三角形可得a=2b,又c=1,集合
可求
,则椭圆C的方程可求;(2)由给出的椭圆C的短轴长为2,结合c=1求出椭圆方程,分过点F2的直线l的斜率存在和不存在讨论,当斜率存在时,把直线方程和椭圆方程联立,由根与系数关系写出两个交点的横坐标的和,把
转化为数量积等于0,代入坐标后可求直线的斜率,则直线l的方程可求
试题解析:(1)
为等边三角形,则
……2
椭圆
的方程为:
; ……3
(2)容易求得椭圆
的方程为
, ……5
当直线
的斜率不存在时,其方程为
,不符合题意; ……6
当直线的斜率存在时,设直线
的方程为
,
由
得
,设
,
则
, ……8
∵
,
∴
,
即![]()
……10
解得
,即
,
故直线
的方程为
或
. ……12
科目:高中数学 来源: 题型:
【题目】已知下图中,四边形 ABCD是等腰梯形,
,
,O、Q分别为线段AB、CD的中点,OQ与EF的交点为P,OP=1,PQ=2,现将梯形ABCD沿EF折起,使得
,连结AD、BC,得一几何体如图所示.
![]()
(Ⅰ)证明:平面ABCD
平面ABFE;
(Ⅱ)若上图中,
,CD=2,求平面ADE与平面BCF所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,以原点为圆心,椭圆C的短半轴长为半径的圆与直线
相切.
、
是椭圆的左、右顶点,直线
过
点且与
轴垂直.
![]()
(1)求椭圆
的标准方程;
(2)设
是椭圆
上异于
、
的任意一点,作
轴于点
,延长
到点
使得
,连接
并延长交直线
于点
,
为线段
的中点,判断直线
与以
为直径的圆
的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x2﹣1)=loga
(a>0且a≠1)
(1)求函数f(x)的解析式,并判断f(x)的奇偶性;
(2)解关于x的方程f(x)=loga
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
(
为参数,
),其中
,在以
为极点,
轴正半轴为极轴的极坐标系中,曲线
,曲线
.
(Ⅰ)求
与
交点的直角坐标系;
(Ⅱ)若
与
相交于点
,
与
相交于点
,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com