【题目】已知椭圆
:
,曲线
上的动点
满足:
.
(1)求曲线
的方程;
(2)设
为坐标原点,第一象限的点
分别在
和
上,
,求线段
的长.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
,短轴的两个端点分别为
.
(Ⅰ)若
为等边三角形,求椭圆
的方程;
(Ⅱ)若椭圆
的短轴长为
,过点
的直线
与椭圆
相交于
两点,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,
平面
,
//
,
,
,
分别为
线段
,
的中点.
(Ⅰ)求证:
//平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)写出三棱锥
与三棱锥
的体积之比.(结论不要求证明)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=log
为奇函数,a为常数,
(1)求a的值;
(2)证明f(x)在区间(1,+∞)上单调递增;
(3)若x∈[3,4],不等式f(x)>(
)x+m恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社区超市购进了A,B,C,D四种新产品,为了解新产品的销售情况,该超市随机调查了15位顾客(记为
)购买这四种新产品的情况,记录如下(单位:件):
顾 客 产 品 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A | 1 | 1 | 1 | 1 | 1 | ||||||||||
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
D | 1 | 1 | 1 | 1 | 1 | 1 |
(Ⅰ)若该超市每天的客流量约为300人次,一个月按30天计算,试估计产品A的月销售量(单位:件);
(Ⅱ)为推广新产品,超市向购买两种以上(含两种)新产品的顾客赠送2元电子红包.现有甲、乙、丙三人在该超市购物,记他们获得的电子红包的总金额为X,
求随机变量X的分布列和数学期望;
(Ⅲ)若某顾客已选中产品B,为提高超市销售业绩,应该向其推荐哪种新产品?(结果不需要证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知曲线
的参数方程为
(
为参数),以直角坐标系原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(Ⅰ)求曲线
的普通方程与直线
的直角坐标方程;
(Ⅱ)设点
为曲线
上的动点,求点
到直线
距离的最大值及其对应的点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)为选拔选手参加“中国汉字听写大会”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为
)进行统计.按照
,
,
,
,
的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在
,
的数据).
![]()
(1)求样本容量
和频率分布直方图中的
、
的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国汉字听写大会”,求所抽取的2名学生中至少有一人得分在
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点
,离心率为
.
(1)求椭圆的标准方程;
(2)过椭圆的上顶点作直线
交抛物线
于
两点,
为原点.
①求证:
;
②设
、
分别与椭圆相交于
、
两点,过原点
作直线
的垂线
,垂足为
,证明:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面
平面
,
直线
,
是
内不同的两点,
是
内不同的两点,且
直线
上
分别是线段
的中点,下列判断正确的是( )
![]()
A. 当
时,
两点不可能重合
B.
两点可能重合,但此时直线
与
不可能相交
C. 当
与
相交,直线
平行于
时,直线
可以与
相交
D. 当
是异面直线时,直线
可能与
平行
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com