【题目】已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )
(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.27%,P(μ-2σ<ξ<μ+2σ)=95.45%.)
A. 4.56%B. 13.59%C. 27.18%D. 31.74%
科目:高中数学 来源: 题型:
【题目】数列
满足an=2an-1+2n+1(n∈N*,n≥2),
.
(1)求
的值;
(2)是否存在一个实数t,使得
(n∈N*),且数列{
}为等差数列?若存在,求出实数t;若不存在,请说明理由;
(3)求数列
的前n项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一智能扫地机器人在
处发现位于它正西方向的
处和北偏东30°方向上的
处分别有需要清扫的垃圾,红外线感应测量发现机器人到
的距离比到
的距离少0.4米,于是选择沿
路线清扫,已知智能扫地机器人的直线行走速度为0.2
,忽略机器人吸入垃圾及在
处旋转所用时间,10秒钟完成了清扫任务.
![]()
(1)
、
两处垃圾的距离是多少?
(2)智能扫地机器人此次清扫行走路线的夹角
的正弦值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,圆
的普通方程为
. 在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(Ⅰ) 写出圆
的参数方程和直线
的直角坐标方程;
( Ⅱ ) 设直线
与
轴和
轴的交点分别为
,
为圆
上的任意一点,求
的取值范围.
【答案】(1)
;
.
(2)
.
【解析】【试题分析】(I)利用圆心和半径,写出圆的参数方程,将圆的极坐标方程展开后化简得直角坐标方程.(II)求得
两点的坐标, 设点
,代入向量
,利用三角函数的值域来求得取值范围.
【试题解析】
(Ⅰ)圆
的参数方程为
(
为参数).
直线
的直角坐标方程为
.
(Ⅱ)由直线
的方程
可得点
,点
.
设点
,则
.
.
由(Ⅰ)知
,则
.
因为
,所以
.
【题型】解答题
【结束】
23
【题目】选修4-5:不等式选讲
已知函数
,
.
(Ⅰ)若对于任意
,
都满足
,求
的值;
(Ⅱ)若存在
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:
收看 | 没收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根据上表说明,能否有
的把握认为,收看开幕式与性别有关?
(Ⅱ)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.
(ⅰ)问男、女学生各选取多少人?
(ⅱ)若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂家具车间造
、
型两类桌子,每张桌子需木工和漆工梁道工序完成.已知木工做一张
、
型型桌子分别需要1小时和2小时,漆工油漆一张
、
型型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张
、
型型桌子分别获利润2千元和3千元.
(1)列出满足生产条件的数学关系式,并画出可行域;
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂家具车间造
、
型两类桌子,每张桌子需木工和漆工梁道工序完成.已知木工做一张
、
型型桌子分别需要1小时和2小时,漆工油漆一张
、
型型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张
、
型型桌子分别获利润2千元和3千元.
(1)列出满足生产条件的数学关系式,并画出可行域;
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:
打算观看 | 不打算观看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附: ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是偶函数,且满足
,当
时,
,当
时,
的最大值为
.
(1)求实数
的值;
(2)函数
,若对任意的
,总存在
,使不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com