【题目】如图,在直角坐标系xoy中,其中A(0,0),B(2,0),C(1,1),D(0,1),图中圆弧所在圆的圆心为点C,半径为
,且点P在图中阴影部分(包括边界)运动.若
,其中
,则
的取值范围是( )
![]()
A. [2,3+
] B. [2,3+
] C. [3-
, 3+
] D. [3-
, 3+
]
【答案】B
【解析】![]()
以A为坐标原点,AB为x轴,DA为y轴建立平面直角坐标系则
A(0,0),D(0,1),C(1,1),B(2,0)
直线BD的方程为x+2y﹣2=0,C到BD的距离d=
;
∴以点C为圆心,以
为半径的圆方程为(x﹣1)2+(y﹣1)2=
,
设P(m,n)则
=(m,n),
=(2,0),
=(﹣1,1);
∴(m,n)=(2x﹣y,y)
∴m=2x﹣y,n=y,
∵P在圆内或圆上
∴(2x﹣y﹣1)2+(y﹣1)2≤
,
设4x﹣y=t,则y=4x﹣t,代入上式整理得
80x2﹣(48t+16)x+8t2+7≤0,
设f(x)=80x2﹣(48t+16)x+8t2+7,x∈[
,
],
则
,
解得2≤t≤3+
,
∴4x﹣y的取值范围是[2,3+
].
故选:B.
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代著名数学经典.其中对勾股定理的论术比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦
尺,弓形高
寸,估算该木材镶嵌在墙中的体积约为( )
(注:1丈=10尺=100寸,
,
)
![]()
A. 633立方寸 B. 620立方寸 C. 610立方寸 D. 600立方寸
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点与上、下顶点构成直角三角形,以椭圆
的长轴长为直径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)设过椭圆右焦点且不平行于
轴的动直线与椭圆
相交于
两点,探究在
轴上是否存在定点
,使得
为定值?若存在,试求出定值和点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若圆
(
)上仅有
个点到直线
的距离为
,则实数
的取值范围是( )
A.
B.
C.
D. ![]()
【答案】B
【解析】圆心到直线
距离为
,所以要有
个点到直线
的距离为
,需
,选B.
点睛:与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.
【题型】单选题
【结束】
15
【题目】设
和
为双曲线
的两个焦点,若
,
,
是正三角形的三个顶点,则双曲线的渐近线方程是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图 1,在直角梯形
中,
,且
.现以
为一边向形外作正方形
,然后沿边
将正方形
翻折,使
平面与平面
垂直,
为
的中点,如图 2.
(1)求证:
平面
;
(2)求证:
平面
;
(3)求点
到平面
的距离.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李,小王设计的底座形状分别为
,
,经测量
米,
米,
米, ![]()
(I)求
的长度;
(Ⅱ)若环境标志的底座每平方米造价为
元,不考虑其他因素,小李,小王谁的设计建造费用最低(请说明理由),最低造价为多少?(
)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两点
及
,点
在以
、
为焦点的椭圆
上,且
、
、
构成等差数列.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设
是过原点的直线,
是与n垂直相交于
点,与椭圆相交于
两点的直线,
,是否存在上述直线
使
成立?若存在,求出直线
的方程;若不存在,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com