精英家教网 > 高中数学 > 题目详情
2.现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.
(1)从中任选一幅画布置房间,有几种不同的选法?
(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?
(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?

分析 (1)根据题意,计算可得共有14幅画,由组合数公式计算可得答案,
(2)分三步完成,第一步选国画有5种,第二步选油画有2种,第三步选水彩画有7种,根据分步计数原理,问题得以解决.
(3)分三类,第一类,选国画和油画,第二类,选国画和水彩画,第三类,选油画和水彩画,根据分类计数原理,问题得以解决.

解答 解:(1)根据题意,共有5幅不同的国画,2幅不同的油画,7幅不同的水彩画,共有5+2+7=14幅画,
从中任选一幅画布置房间,有14种选法,
(2)分三步完成,第一步选国画有5种,
第二步选油画有2种,
第三步选水彩画有7种,
根据分步计数原理得,共有5×2×7=70种.
(2)根据题意,分三类情况讨论:
第一类,选国画和油画共有5×2=10种,
第二类,选国画和水彩画共有5×7=35种,
第三类,选油画和水彩画共有2×7=14种,
根据分类计数原理共有10+25+14=59种.

点评 本题主要考查了分类和分步计数原理,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.利用数学归纳法证明不等式$\frac{1}{n}$+$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$>$\frac{10}{13}$时,由k递推到k+1时,不等式左边应添加的式子是(  )
A.$\frac{1}{2k+1}$B.$\frac{1}{2k+1}$+$\frac{1}{2k+2}$C.$\frac{1}{2k+1}$-$\frac{1}{k}$D.$\frac{1}{2k+1}$+$\frac{1}{2k+2}$-$\frac{1}{k}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=f(x)是定义在(0,+∞)上为增函数,且f(2m)>f(-m+9),则实数m的取值范围是(  )
A.(0,9)B.(3,9)C.(3,+∞)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow{a}$=(2,-1,4),$\overrightarrow{b}$=(-4,-5,-1),若($\overrightarrow{a}$-k$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则实数k=-$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\overrightarrow a$=(m-3,m+3),$\overrightarrow b$=(2m+1,-m+4),且1≤m≤5,则$\overrightarrow{a}$•$\overrightarrow{b}$的取值范围是[5,14].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若关于实数x的不等式|x-5|-|x-2|>a无解,则实数a的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=sinx+2|sinx|,(x∈(0,2π)的图象与直线y=k恰有四个不同的交点,则k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=x3-x2-x(0<x<2)极小值是(  )
A.0B.-1C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.两平行直线3x+4y-5=0和mx+8y+10=0的距离为2.

查看答案和解析>>

同步练习册答案