某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板
长为2m,跳水板距水面
的高
为3m,
=5m,
=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点
m(
)时达到距水面最大高度4m,规定:以
为横轴,
为纵轴建立直角坐标系.![]()
(1)当
=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域
内入水时才能达到压水花的训练要求,求达到压水花的训练要求时
的取值范围.
(1)
;(2)
.
解析试题分析:(1)由题意可以将抛物线的方程设为顶点式.由顶点(3,4),然后代入点
可将抛物线方程求出;(2)将抛物线的方程设为顶点式,由点
得
.将
用
表示.跳水运动员在区域
内入水时才能达到压水花的训练要求,所以方程
在区间[5,6]内有一解,根据抛物线开口向下,由函数的零点与方程的根的关系,令
,由
,且
可得
的取值范围.
试题解析:(1)由题意知最高点为
,
,
设抛物线方程为
, 4分
当
时,最高点为(3,4),方程为
,
将
代入,得
,
解得![]()
当
时,跳水曲线所在的抛物线方程
. 8分
(2)将点
代入![]()
得
,所以
.
由题意,方程
在区间[5,6]内有一解. 10分
令
,
则
,且
.
解得
. 14分
达到压水花的训练要求时
的取值范围
. 16分
考点:1.抛物线的顶点式方程;2.函数的零点与方程的根.
科目:高中数学 来源: 题型:解答题
“城中观海”是近年来国内很多大中型城市内涝所致的现象,究其原因,除天气因素、城市规划等原因外,城市垃圾杂物也是造成内涝的一个重要原因。暴雨会冲刷城市的垃圾杂物一起进入下水道,据统计,在不考虑其它因素的条件下,某段下水道的排水量V(单位:立方米/小时)是杂物垃圾密度x(单位:千克/立方米)的函数。当下水道的垃圾杂物密度达到2千克/立方米时,会造成堵塞,此时排水量为0;当垃圾杂物密度不超过0.2千克/立方米时,排水量是90立方米/小时;研究表明,
时,排水量V是垃圾杂物密度x的一次函数。
(Ⅰ)当
时,求函数V(x)的表达式;
(Ⅱ)当垃圾杂物密度x为多大时,垃圾杂物量(单位时间内通过某段下水道的垃圾杂物量,单位:千克/小时)
可以达到最大,求出这个最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某工厂有
名工人,现接受了生产
台
型高科技产品的总任务.已知每台
型产品由
个
型装置和
个
型装置配套组成,每个工人每小时能加工
个
型装置或
个
型装置.现将工人分成两组同时开始加工,每组分别加工一种装置(完成自己的任务后不再支援另一组).设加工
型装置的工人有
人,他们加工完
型装置所需时间为
,其余工人加工完
型装置所需时间为
(单位:小时,可不为整数).
(1)写出
、
的解析式;
(2)写出这
名工人完成总任务的时间
的解析式;
(3)应怎样分组,才能使完成总任务用的时间最少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
满足对任意实数
都有
成立,且当
时,
,
.
(1)求
的值;
(2)判断
在
上的单调性,并证明;
(3)若对于任意给定的正实数
,总能找到一个正实数
,使得当
时,
,则称函数
在
处连续。试证明:
在
处连续.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
的图像与函数h(x)=x++2的图像关于点A(0,1)对称.
(1) 求
的解析式;
(2) 若
,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数 f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=-1时,求
的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值;
(3)当a=-1时,试推断方程
是否有实数解 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com