【题目】设以
的边
为长轴且过点
的椭圆
的方程为
椭圆
的离心率
,
面积的最大值为
,
和
所在的直线分别与直线
相交于点
,
.
(1)求椭圆
的方程;
(2)设
与
的外接圆的面积分别为
,
,求
的最小值.
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位.已知圆
和圆
的极坐标方程分别是
和
.
(1)求圆
和圆
的公共弦所在直线的直角坐标方程;
(2)若射线
:
与圆
的交点为O、P,与圆
的交点为O、Q,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某饮料厂生产
两种饮料.生产1桶
饮料,需该特产原料100公斤,需时间3小时;生产1桶
饮料需该特产原料100公斤,需时间1小时,每天
饮料的产量不超过
饮料产量的2倍,每天生产两种饮料所需该特产原料的总量至多750公斤,每天生产
饮料的时间不低于生产
饮料的时间,每桶
饮料的利润是每桶
饮料利润的1.5倍,若该饮料厂每天生产
饮料
桶,
饮料
桶时(
)利润最大,则
_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正四棱锥
的底面边长为
高为
其内切球与面
切于点
,球面上与
距离最近的点记为
,若平面
过点
,
且与
平行,则平面
截该正四棱锥所得截面的面积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体
的棱长为1,线段
上有两个动点
,且
,现有如下四个结论:
;
平面
;
三棱锥
的体积为定值;
异面直线
所成的角为定值,
其中正确结论的序号是______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若点
在平面
外,过点
作面
的垂线,则称垂足
为点
在平面
内的正投影,记为
.如图,在棱长为
的正方体
中,记平面
为
,平面
为
,点
是棱
上一动点(与
不重合),
,
.给出下列三个结论:①线段
长度的取值范围是
;②存在点
使得
平面
;③存在点
使得
.其中正确结论的序号是_______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,
底面ABC,
,
,
,D,E分别为棱BC,PC的中点,点F在棱PA上,设
.
![]()
(1)当
时,求异面直线DF与BE所成角的余弦值;
(2)试确定t的值,使二面角C-EF-D的平面角的余弦值为
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com