【题目】已知向量
,
,函数
.
(1)求函数
的最小正周期与
图象的对称轴方程;
(2)若
,
,函数
的最小值是
,最大值是2,求实数
,
的值.
科目:高中数学 来源: 题型:
【题目】设以
的边
为长轴且过点
的椭圆
的方程为
椭圆
的离心率
,
面积的最大值为
,
和
所在的直线分别与直线
相交于点
,
.
(1)求椭圆
的方程;
(2)设
与
的外接圆的面积分别为
,
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
在点
处的切线方程为
.
(1)求
,
;
(2)函数
图像与
轴负半轴的交点为
,且在点
处的切线方程为
,函数
,
,求
的最小值;
(3)关于
的方程
有两个实数根
,
,且
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学号为1,2,3的三位小学生,在课余时间一起玩“掷骰子爬楼梯”游戏,规则如下:投掷一颗骰子,将每次出现点数除以3,若学号与之同余(同除以3余数相同),则该小学生可以上2阶楼梯,另外两位只能上1阶楼梯,假定他们都是从平地(0阶楼梯)开始向上爬,且楼梯数足够多.
(1)经过2次投掷骰子后,学号为1的同学站在第X阶楼梯上,试求X的分布列;
(2)经过多次投掷后,学号为3的小学生能站在第n阶楼梯的概率记为
,试求
,
,
的值,并探究数列
可能满足的一个递推关系和通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆
的短轴长为2,离心率为
.
![]()
(1)求椭圆E的标准方程;
(2)若直线l与椭圆E相切于点P(点P在第一象限内),与圆
相交于点A,B,且
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前n项和为
,把满足条件![]()
的所有数列
构成的集合记为
.
(1)若数列
的通项为
,则
是否属于
?
(2)若数列
是等差数列,且
,求
的取值范围;
(3)若数列
的各项均为正数,且
,数列
中是否存在无穷多项依次成等差数列,若存在,给出一个数列
的通项;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点
在椭圆
上,过点
作
轴的垂线,垂足为
,点
满足
,已知点
的轨迹是过点
的圆.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点(
,
在
轴的同侧),
,
为椭圆的左、右焦点,若
,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《周礼夏官马质》中记载“马量三物:一日戎马,二日田马,三日驽马”,其意思为马按照品种可以分为三个等级,一等马为戎马,二等马为田马,三等马为驽马.假设在唐朝的某个王爷要将7匹马(戎马3匹,田马、驽马各2匹)赏赐给甲、乙、丙3人,每人至少2匹,则甲和乙都得到一等马的分法总数为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com