【题目】已知钝角
中,角A,B,C的对边分别为a,b,c,其中A为钝角,若
,且
.
(1)求角C;
(2)若点D满足
,且
,求
的周长.
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点O,
轴正半轴为极轴,已知点P的直角坐标为(1,-5),点C的极坐标为
,若直线l经过点P,且倾斜角为
,圆C的半径为4.
(1).求直线l的参数方程及圆C的极坐标方程;
(2).试判断直线l与圆C有位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
)的周期为
,图象的一个对称中心为
将函数
图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所有图象向右平移
个单位长度后得到函数
的图象.
(1)求函数
与
的解析式;
(2)当
,求实数
与正整数
,使
在
恰有2019个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知
为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若
,
,
,求方程
在区间
内的解集;
(2)若点
是直线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
.若
恒成立,求实数
的最大值;
(3)若函数
满足“图像关于点
对称,且在
处
取得最小值”,求
、
和
满足的充要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,椭圆的离心率为
,过椭圆
的左焦点
,且斜率为
的直线
,与以右焦点
为圆心,半径为
的圆
相切.
(1)求椭圆
的标准方程;
(2)线段
是椭圆
过右焦点
的弦,且
,求
的面积的最大值以及取最大值时实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】刘徽《九章算术商功》中将底面为长方形,两个三角面与底面垂直的四棱锥体叫做阳马.如图,是一个阳马的三视图,则其外接球的体积为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com