【题目】已知实数
,设函数
.
(1)当
,
时,证明:
;
(2)若
有两个极值点
,证明:
.
【答案】(1)证明见解析 (2)证明见解析
【解析】
(1)转化原不等式为
,令
,
,对称轴
,求导分析单调性,可得
在
上单调递增,在
上递减,
在
上递增,只需证明
,构造
,分析单调性,即可得证;
(2)求导,由
为极值点,可得
,
,化简可得
,继而构造函数
可证明
,
令
可得![]()
,令
,求导研究单调性,可证明
,即得证
(1)
,即为![]()
即
令
,则
令
令对称轴
则![]()
时,
时,
时,
在
上单调递增,在
上递减,且
在
上递增
故只需证明
,即证
即
令
则
在
上单调递减,而
当
时,
,当
时,
即
成立
当
时,
成立;
(2)![]()
有两个极值点
令![]()
当
时,
;当
时,![]()
在
上递减,
上递增
故
即
由
可得
则
由
得
,下证
即
即证
等价于证明
令
![]()
故
令
则
![]()
![]()
令
则![]()
在
上递减
即![]()
科目:高中数学 来源: 题型:
【题目】已知平面上一动点A的坐标为
.
(1)求点A的轨迹E的方程;
(2)点B在轨迹E上,且纵坐标为
.
(i)证明直线AB过定点,并求出定点坐标;
(ii)分别以A,B为圆心作与直线
相切的圆,两圆公共弦的中点为H,在平面内是否存在定点P,使得
为定值?若存在,求出点P坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的极坐标方程是
,以极点为平面直角坐标系的原点,极轴为
轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线
的参数方程是
(
是参数),设点
.
(Ⅰ)将曲线
的极坐标方程化为直角坐标方程,将直线
的参数方程化为普通方程;
(Ⅱ)设直线
与曲线
相交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着人们生活水平的不断提高,肥胖人数不断增多.世界卫生组织(WHO)常用身体质量指数(BMI)来衡量人体胖瘦成度以及是否健康,其计算公式是
.成人的BMI数值标准为:BMI
偏瘦;
BMI
为正常;
BMI
为偏胖;BMI
为肥胖.某研究机构为了解某快递公司员工的身体质量指数,研究人员从公司员工体检数据中,抽取了8名员工(编号1-8)的身高
(cm)和体重
(kg)数据,并计算得到他们的BMI(精确到0.1)如下表:
编 号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高(cm) | 163 | 164 | 165 | 168 | 170 | 172 | 176 | 182 |
体重(kg) | 54 | 60 | 77 | 72 | 68 | ● | 72 | 55 |
BMI(近似值) | 20.3 | 22.3 | 28.3 | 25.5 | 23.5 | 23.7 | 23.2 | 16.6 |
(1)现从这8名员工中选取3人进行复检,记抽取到BMI值为“正常”员工的人数为
,求
的分布列及数学期望.
(2)研究机构分析发现公司员工的身高
(cm)和体重
(kg)之间有较强的线性相关关系,在编号为6的体检数据丢失之前调查员甲已进行相关的数据分析,并计算得出该组数据的线性回归方程为
,且根据回归方程预估一名身高为180cm的员工体重为71kg,计算得到的其它数据如下:
,
.
①求
的值及表格中8名员工体重的平均值
.
②在数据处理时,调查员乙发现编号为8的员工体重数据有误,应为63kg,身高数据无误,请你根据调查员乙更正的数据重新计算线性回归方程,并据此预估一名身高为180cm的员工的体重.
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘法估计分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,且椭圆上一点
的坐标为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点,且以线段
为直径的圆过椭圆的右顶点
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中假命题是( )
A.若随机变量
服从正态分布
,
,则
;
B.已知直线
平面
,直线
平面
,则“
”是“
”的必要不充分条件;
C.若
,则
在
方向上的正射影的数量为![]()
D.命题
的否定![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com