【题目】给出下列命题:
用反证法证明命题“设a,b,c为实数,且
,
,则
,
,
”时,要给出的假设是:a,b,c都不是正数;
若函数
在
处取得极大值,则
或
;
用数学归纳法证明
,在验证
成立时,不等式的左边是
;
数列
的前n项和
,则
是数列
为等比数列的充要条件;
上述命题中,所有正确命题的序号为______.
科目:高中数学 来源: 题型:
【题目】若对于曲线f(x)=-ex-x(e为自然对数的底数)的任意切线l1,总存在曲线g(x)=ax+2cosx的切线l2,使得l1⊥l2,则实数a的取值范围为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数
的图象向右平移
个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,假命题的是( )
A.一条直线与两个平行平面中的一个相交,则必与另一个平面相交.
B.平行于同一平面的两条直线一定平行.
C.如果平面
不垂直于平面
,那么平面
内一定不存在直线垂直于平面
.
D.若直线
不平行于平面
,且
不在平面
内,则在平面
内不存在与
平行的直线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
.
(1)若直线
经过抛物线
的焦点,求抛物线
的准线方程;
(2)若斜率为-1的直线经过抛物线
的焦点
,且与抛物线
交于
,
两点,当
时,求抛物线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,椭圆
:
的左、右焦点分别为
,
.过焦点且垂直于
轴的直线与椭圆
相交所得的弦长为3,直线
与椭圆
相切.
(1)求椭圆
的标准方程;
(2)是否存在直线
:
与椭圆
相交于
两点,使得
?若存在,求
的取值范围;若不存在,请说明理由!
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,底面是边长为4的正三角形,
底面
,点
分别为
的中点,且异面直线
和
所成的角的大小为
.
![]()
(1)求证:平面
平面
;
(2)求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在
年的自主招生考试成绩中随机抽取
名学生的笔试成绩,按成绩分组:第
组
,第
组
,第
组
,第
组
,第
组
得到的频率分布直方图如图所示
![]()
分别求第
组的频率;
若该校决定在第
组中用分层抽样的方法抽取
名学生进入第二轮面试,
已知学生甲和学生乙的成绩均在第
组,求学生甲和学生乙同时进入第二轮面试的概率;
根据直方图试估计这
名学生成绩的平均分.(同一组中的数据用改组区间的中间值代表)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com