精英家教网 > 高中数学 > 题目详情

【题目】若对于曲线f(x)=-exx(e为自然对数的底数)的任意切线l1,总存在曲线g(x)=ax+2cosx的切线l2,使得l1l2,则实数a的取值范围为________

【答案】

【解析】

先求f′(x)=﹣ex﹣1,﹣ex﹣1,进一步得 ∈(0,1),再求g′(x)=a﹣2sinx, =a﹣2sinx∈[﹣2+a,2+a],l1⊥l2转化为集合间的包含关系求解即可

f(x)=﹣ex﹣x,得f′(x)=﹣ex﹣1,所以﹣ex﹣1

∵ex+1>1,∴ ∈(0,1),

g(x)=ax+2cosx,得g′(x)=a﹣2sinx,又﹣2sinx∈[﹣2,2],

∴a﹣2sinx∈[﹣2+a,2+a],

要使过曲线f(x)=﹣ex﹣x上任意一点的切线为l1

总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2

,解得﹣1≤a≤2.

故答案为:[-1,2]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,函数在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右顶点分别为,上顶点为B,右焦点为F,已知直线的倾斜角为120°.

(1)求椭圆C的方程;

(2)P为椭圆C上不同于的一点,O为坐标原点,线段的垂直平分线交M点,过M且垂直于的直线交y轴于Q点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中高一,高二,高三的模联社团的人数分别为35,28,21,现采用分层抽样的方法从中抽取部分学生参加模联会议,已知在高二年级和高三年级中共抽取7名同学.

(Ⅰ)应从高一年级选出参加会议的学生多少名?

(Ⅱ)设高二,高三年级抽出的7名同学分别用表示,现从中随机抽取名同学承担文件翻译工作.

(i)试用所给字母列举出所有可能的抽取结果;

(ii)设为事件“抽取的两名同学来自同一年级”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是ABBB1的中点.

)证明: BC1//平面A1CD;

)设AA1= AC=CB=2AB=2,求三棱锥CA1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.

(1)求椭圆的标准方程;

(2)若不经过点的直线与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p2x2﹣3x+1≤0qx22a+1x+aa+1≤0

1)若a=,且p∧q为真,求实数x的取值范围.

2)若pq的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

用反证法证明命题abc为实数,且,则时,要给出的假设是:abc都不是正数;

若函数处取得极大值,则

用数学归纳法证明,在验证成立时,不等式的左边是

数列的前n项和,则是数列为等比数列的充要条件;

上述命题中,所有正确命题的序号为______

查看答案和解析>>

同步练习册答案