【题目】若对于曲线f(x)=-ex-x(e为自然对数的底数)的任意切线l1,总存在曲线g(x)=ax+2cosx的切线l2,使得l1⊥l2,则实数a的取值范围为________.
【答案】![]()
【解析】
先求f′(x)=﹣ex﹣1,令
﹣ex﹣1,进一步得![]()
∈(0,1),再求g′(x)=a﹣2sinx,令
=a﹣2sinx∈[﹣2+a,2+a],把l1⊥l2转化为集合间的包含关系求解即可.
由f(x)=﹣ex﹣x,得f′(x)=﹣ex﹣1,所以
﹣ex﹣1
∵ex+1>1,∴
∈(0,1),
由g(x)=ax+2cosx,得g′(x)=a﹣2sinx,又﹣2sinx∈[﹣2,2],
∴a﹣2sinx∈[﹣2+a,2+a],
要使过曲线f(x)=﹣ex﹣x上任意一点的切线为l1,
总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,
则
,解得﹣1≤a≤2.
故答案为:[-1,2]
科目:高中数学 来源: 题型:
【题目】设椭圆
的左、右顶点分别为
,
,上顶点为B,右焦点为F,已知直线
的倾斜角为120°,
.
(1)求椭圆C的方程;
(2)设P为椭圆C上不同于
,
的一点,O为坐标原点,线段
的垂直平分线交
于M点,过M且垂直于
的直线交y轴于Q点,若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中高一,高二,高三的模联社团的人数分别为35,28,21,现采用分层抽样的方法从中抽取部分学生参加模联会议,已知在高二年级和高三年级中共抽取7名同学.
(Ⅰ)应从高一年级选出参加会议的学生多少名?
(Ⅱ)设高二,高三年级抽出的7名同学分别用
表示,现从中随机抽取
名同学承担文件翻译工作.
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设
为事件“抽取的两名同学来自同一年级”,求事件
发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
![]()
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2
,求三棱锥C一A1DE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的右焦点为
,上顶点为
,直线
的斜率为
,且原点到直线
的距离为
.
(1)求椭圆
的标准方程;
(2)若不经过点
的直线
:
与椭圆
交于
两点,且与圆
相切.试探究
的周长是否为定值,若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知p:2x2﹣3x+1≤0,q:x2﹣(2a+1)x+a(a+1)≤0
(1)若a=
,且p∧q为真,求实数x的取值范围.
(2)若p是q的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
用反证法证明命题“设a,b,c为实数,且
,
,则
,
,
”时,要给出的假设是:a,b,c都不是正数;
若函数
在
处取得极大值,则
或
;
用数学归纳法证明
,在验证
成立时,不等式的左边是
;
数列
的前n项和
,则
是数列
为等比数列的充要条件;
上述命题中,所有正确命题的序号为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com