精英家教网 > 高中数学 > 题目详情
设等差数列{an}的前n项和为Sn且a5+a13=34,S3=9.
(1)求数列{an}的通项公式及前n项和公式;
(2)设数列{bn}的通项公式为bn=
anan+t
,若b1,b2,b4成等差数列,求出t的值.
分析:(1)设等差数列{an}的公差为d,由a5+a13=34,S3=9可得关于数列首项与公差的方程组,解方程求出首项和公差,由此能求出数列{an}的通项公式及前n项和公式.
(2)由b1,b2,b4成等差数列,结合等差数列性质及bn=
an
an+t
,构造关于t的方程,解方程可得答案.
解答:解:(1)设等差数列{an}的公差为d,
∵a5+a13=34,S3=9.
∴a1+8d=17,2a1+3d=9,…(2分)
解得:a1=1,d=2,….(4分)
故an=2n-1,Sn=n2,…(6分)
(2)由(1)得bn=
an
an+t
=
2n-1
2n-1+t

若b1,b2,b4成等差数列
则2b2=b1+b4…8分
即2×
3
3+t
=
1
1+t
+
7
7+t
…10分
解得t=5…12分
点评:本题考查等差数列的性质和应用,考查运算求解能力和论证推理能力,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.若S2k=72,且ak+1=18-ak,则正整数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项之和为Sn满足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S9=81,S6=36,则S3=(  )

查看答案和解析>>

同步练习册答案