【题目】某学习小组在研究性学习中,对昼夜温差大小与绿豆种子一天内出芽数之间的关系进行研究该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的100颗绿豆种子当天内的出芽数(如图2).
![]()
![]()
根据上述数据作出散点图,可知绿豆种子出芽数(颗)和温差具有线性相关关系.
附:
,![]()
(1)求绿豆种子出芽数(颗)关于温差的回归方程;
(2)假如4月1日至7日的日温差的平均值为11℃,估计4月7日浸泡的10000颗绿豆种子一天内的出芽数.
【答案】(1)
(2)4月7日浸泡的10000颗绿豆种子一天内的出芽数约为5125颗
【解析】
(1)根据最高(低)温度折线图和出芽数条形图可得出数据表,分别求出
,
,
,
,
,
,从而得出绿豆种子出芽数(颗)关于温差的回归方程;
(2)根据4月1日至7日温差的平均值为11℃,求出4月7日的温差
,代入第(1)问所求的回归方程中得100颗绿豆种子出芽数(颗),从而估计出4月7日浸泡的10000颗绿豆种子一天内的出芽数.
(1)解:依照最高(低)温度折线图和出芽数条形图可得如下数据表:
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 |
温差 | 7 | 8 | 12 | 9 | 13 | 11 |
出芽数 | 23 | 26 | 37 | 31 | 40 | 35 |
故
,
,
|
|
| 2 |
| 3 | 1 |
|
|
| 5 |
| 8 | 3 |
,
,
所以,
,
则
,
所以,绿豆种子出芽数
(颗)关于温差
(℃)的回归方程为
.
(2)解:因为4月1日至7日温差的平均值为11℃,
所以4月7日的温差
(℃),
所以,
,
所以,4月7日浸泡的10000颗绿豆种子一天内的出芽数约为5125颗.
科目:高中数学 来源: 题型:
【题目】对于函数
,若存在区间
,使得
,则称函数
为“可等域函数”,区间
为函数的一个“可等域区间”.给出下列四个函数:
①
;
②
;
③
;
④
.
其中存在唯一“可等域区间”的“可等域函数”的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=
,点F是PB的中点,点E在边BC上移动.
![]()
(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点E在BC边的何处,都有
;
(3)当
为何值时,
与平面
所成角的大小为45°.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在边长为
的正方形
中,线段BC的端点
分别在边
、
上滑动,且
,现将
,
分别沿AB,AC折起使点
重合,重合后记为点
,得到三被锥
.现有以下结论:
![]()
①
平面
;
②当
分别为
、
的中点时,三棱锥
的外接球的表面积为
;
③
的取值范围为
;
④三棱锥
体积的最大值为
.
则正确的结论的个数为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点O,
轴正半轴为极轴,已知点P的直角坐标为(1,-5),点C的极坐标为
,若直线l经过点P,且倾斜角为
,圆C的半径为4.
(1).求直线l的参数方程及圆C的极坐标方程;
(2).试判断直线l与圆C有位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,椭圆的离心率为
,过椭圆
的左焦点
,且斜率为
的直线
,与以右焦点
为圆心,半径为
的圆
相切.
(1)求椭圆
的标准方程;
(2)线段
是椭圆
过右焦点
的弦,且
,求
的面积的最大值以及取最大值时实数
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com