【题目】如图,在四棱锥
中,侧面
底面
,
为正三角形,
,
,点
,
分别为线段
、
的中点,
、
分别为线段
、
上一点,且
,
.
![]()
(1)确定点
的位置,使得
平面
;
(2)试问:直线
上是否存在一点
,使得平面
与平面
所成锐二面角的大小为
,若存在,求
的长;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的左焦点F为圆
的圆心,且椭圆C上的点到点F的距离最小值为
。
(I)求椭圆C的方程;
(II)已知经过点F的动直线
与椭圆C交于不同的两点A、B,点M坐标为(
),证明:
为定值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017兰州高考模拟】.在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=
。
![]()
(1)求证:平面EBC⊥平面EBD;
(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“开门大吉”是中央电视台推出的娱乐节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌![]()
的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1) 完成下列2×2列联表(见答题纸);
(2)判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由.(下面的临界值表供参考)
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
(参考公式:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2-3x+2≤0},集合B={y|y=x2-2x+a},集合C={x|x2-ax-4≤0}.命题p:A∩B≠;命题q:AC.
(1)若命题p为假命题,求实数a的取值范围;
(2)若命题p∧q为真命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各式:
(1)
;
(2)已知
,则
;
(3)函数
的图象与函数
的图象关于y轴对称;
(4)函数
的定义域是R,则m的取值范围是
;
(5)函数
的递增区间为
.
正确的有______________________.(把你认为正确的序号全部写上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究某学科成绩(满分100分)是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩,得到下图所示女生成绩的茎叶图.其中抽取的男生中有21人的成绩在80分以下,规定80分以上为优秀(含80分).
![]()
(1)请根据题意,将2×2列联表补充完整;
优秀 | 非优秀 | 总计 | |
男生 | |||
女生 | |||
总计 | 50 |
(2)据此列联表判断,是否有90%的把握认为该学科成绩与性别有关?
附:
,其中
.
参考数据 | 当 |
当 | |
当 | |
当 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
ax3-bx2+(2-b)x+1在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.
(1)证明:a>0;
(2)若z=a+2b,求z的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0]时,f(x)=
-
(a∈R).
(1)写出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com