【题目】动点
与定点
的距离和该动点到直线
的距离的比是常数
.
(1)求动点
轨迹方程
;
(2)已知点
,问在
轴上是否存在一点
,使得过
点的任一条斜率不为0的弦交曲线
于
两点,都有
.
【答案】(1)
;(2)存在,坐标为![]()
【解析】
(1)根据题意列出点
满足的关系式,再化简方程即可.
(2) 设
,再讨论当
⊥
轴时可得
,即若存在定点,则定点坐标为
.再讨论斜率存在时,设
的方程为
,联立椭圆方程,求出韦达定理,证明
即可.
(1)由题意,知
,即
.
解得曲线
的方程为
.
(2)法一:设
,易知
,
①若
⊥
轴时,由
,此时
,满足椭圆方程
,
∴
,解得
(舍),可知若存在定点,则定点坐标为
.
②当直线
斜率存在时,设斜率为k,![]()
设
的方程为
,联立椭圆方程
,
消去
得
,∴
.
,∴![]()
![]()
,
综合①②可知,存在点
,使得
.
(2)(解法二)设
,易知
,设
.
若
不垂直
轴,
的斜率为
,则直线
的方程为
,
,
,
,
即是
①,
由
,得
,
代入①式得
化简,
整理得
②,
为使
与斜率
无关,由②式得出
,解得
(舍),
这说明
与
轴不垂直时,
是过
的弦,恒有
,
若
⊥
轴时,
:
,
是等腰三角形,
,
,
,
,
,
可见
是等腰直角三角形,
,
综上,过
的弦
总有
.
科目:高中数学 来源: 题型:
【题目】若函数
满足“存在正数
,使得对定义域内的每一个值
,在其定义域内都存在
,使
成立”,则称该函数为“依附函数”.
(1)分别判断函数①
,②
是否为“依附函数”,并说明理由;
(2)若函数
的值域为
,求证:“
是‘依附函数’”的充要条件是“
”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当急需住院人数超过医院所能收治的病人数量时就会发生“医疗资源挤兑”现象,在新冠肺炎爆发期间,境外某市每日下班后统计住院人数,从中发现:该市每日因新冠肺炎住院人数均比前一天下班后统计的住院人数增加约25%,但每日大约有200名新冠肺炎患者治愈出院,已知该市某天下班后有1000名新冠肺炎患者住院治疗,该市的医院共可收治4000名新冠肺炎患者,若继续按照这样的规律发展,该市因新冠肺炎疫情发生“医疗资源挤兑”现象,只需要约( )
参考数据:
.
A.7天B.10天C.13天D.16天
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动圆
过定点
,且在
轴上截得的弦
的长为4.
(1)若动圆圆心
的轨迹为曲线
,求曲线
的方程;
(2)在曲线
的对称轴上是否存在点
,使过点
的直线
与曲线
的交点
满足
为定值?若存在,求出点
的坐标及定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,
.
(1)当
时,求函数
的单调区间;
(2)若曲线
在点(1,0)处的切线为l : x+y-1=0,求a,b的值;
(3)若
恒成立,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com