精英家教网 > 高中数学 > 题目详情

函数(a>0)的定义域是(    )

A.[-aa]                                                    B.[-a,0]∪(0,a)

C. (0,a)                                                      D. 

D


解析:

取正数时,分母为0,故选D。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
a
+
a
ex
(a>0)
是定义在R上的偶函数.
(1)求a的值;
(2)判断并用单调性定义证明函数f(x)在(0,+∞)上的单调性;
(3)求不等式f(x2-x+2)-f(4x-2)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•揭阳二模)如图(1)示,定义在D上的函数f(x),如果满足:对?x∈D,?常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图(1)、(2)中的常数A、B可以是正数,也可以是负数或零)  

(Ⅰ)试判断函数f(x)=x3+
48
x
在(0,+∞)上是否有下界?并说明理由;
(Ⅱ)又如具有如图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数f(x)在D上有上界的定义,并判断(Ⅰ)中的函数在(-∞,0)上是否有上界?并说明理由;
(Ⅲ)若函数f(x)在D上既有上界又有下界,则称函数f(x)在D上有界,函数f(x)叫做有界函数.试探究函数f(x)=ax3+
b
x
(a>0,b>0a,b是常数)是否是[m,n](m>0,n>0,m、n是常数)上的有界函数?

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:称|b-a|为区间[a,b]的长度,若函数f(x)=
ax2+bx+c
(a<0)
的定义域和值域的区间长度相等,则a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,定义在D上的函数f(x)和g(x)的值域依次是[-(2a+3)π3,a+6]和[a2+
25
4
,(a2+
25
4
)π4]
,若存在x1x2∈D,使得|f(x1)-g(x2)|<
1
4
成立,则a的取值范围为
(0,1)
(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•揭阳二模)如图(1)示,定义在D上的函数f(x),如果满足:对?x∈D,?常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图(1)、(2)中的常数A、B可以是正数,也可以是负数或零)

(Ⅰ)试判断函数f(x)=x3+
48
x
在(0,+∞)上是否有下界?并说明理由;
(Ⅱ)又如具有如图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数f(x)在D上有上界的定义,并判断(Ⅰ)中的函数在(-∞,0)上是否有上界?并说明理由;
(Ⅲ)已知某质点的运动方程为S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一时刻该质点的瞬时速度是以A=
1
2
为下界的函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案