(本小题满分16分)
椭圆
:
的左、右顶点分别
、
,椭圆过点
且离心率
.![]()
(1)求椭圆
的标准方程;
(2)过椭圆
上异于
、
两点的任意一点
作
轴,
为垂足,延长
到点
,且
,过点
作直线
轴,连结
并延长交直线
于点
,线段
的中点记为点
.
①求点
所在曲线的方程;
②试判断直线
与以
为直径的圆
的位置关系, 并证明.
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知抛物线、椭圆和双曲线都经过点
,它们在
轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)对于抛物线上任意一点
,点
都满足
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.![]()
(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知椭圆的中心在坐标原点
,长轴长为
,离心率
,过右焦点
的直线
交
椭圆于
,
两点:
(Ⅰ)求椭圆的方程;(Ⅱ)当直线
的斜率为1时,求
的面积;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
的离心率
,过
的直线到原点的距离是
(1)求双曲线的方程;
(2)已知直线
交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面内一动点P到F(1,0)的距离比点P到
轴的距离少1.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线
于
点,且
,
,
求
的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
解答题(本题共10分.请写出文字说明, 证明过程或演算步骤):
已知
是椭圆
上一点,
,
是椭圆的两焦点,且满足![]()
(Ⅰ)求椭圆方程;
(Ⅱ)设
、
是椭圆上任两点,且直线
、
的斜率分别为
、
,若存在常数
使
,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)已知椭圆C:
=1(a>b>0)的离心率为
,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+
=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com