【题目】
指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当
数值大于或等于20.5时,我们说体重较重,当
数值小于20.5时,我们说体重较轻,身高大于或等于
我们说身高较高,身高小于170cm我们说身高较矮.
(Ⅰ)已知某高中共有32名男体育特长生,其身高与
指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有
的把握认为男生的身高对
指数有影响.
![]()
身高较矮 | 身高较高 | 合计 | |
体重较轻 | |||
体重较重 | |||
合计 |
(Ⅱ)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根据最小二乘法的思想与公式求得线性回归方程为
.利用已经求得的线性回归方程,请完善下列残差表,并求
(解释变量(身高)对于预报变量(体重)变化的贡献值)(保留两位有效数字);
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
体重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 |
|
|
|
|
|
|
|
②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为
.小明重新根据最小二乘法的思想与公式,已算出
,请在小明所算的基础上求出男体育特长生的身高与体重的线性回归方程.
参考数据:
,
,
,
,
参考公式:
,
,
,
,
.
| 0.10 | 0.05 | 0.01 | 0.005 |
| 2.706 | 3.811 | 6.635 | 7.879 |
【答案】(Ⅰ)列联表详见解析,没有
的把握认为男生的身高对
指数有影响;(Ⅱ)①残差表详见解析,
约为0.91;②
.
【解析】
(Ⅰ)根据散点图完善列联表,求出
与表中对应临界值比较即可判断;(Ⅱ)①求出编号为8的数据的残差,相应值代入公式
计算即可;②求出
,代入
中即可求得
,从而求得回归方程.
(Ⅰ)
身高较矮 | 身高较高 | 合计 | |
体重较轻 | 6 | 15 | 21 |
体重较重 | 6 | 5 | 11 |
合计 | 12 | 20 | 32 |
由于
,
因此没有
的把握认为男生的身高对
指数有影响.
(Ⅱ)①对编号为8的数据
,完成残差表如下所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 | 0.1 | 0.3 | 0.9 |
|
|
|
| 3.5 |
![]()
.
所以解释变量(身高)对于预报变量(体重)变化的贡献值
约为0.91.
②由①可知,第八组数据的体重应为58.此时,易知,
,
,
,
所以重新采集数据后,男体育特长生的身高与体重的线性回归方程为
.
科目:高中数学 来源: 题型:
【题目】如图所示的多面体ABCDEF满足:正方形ABCD与正三角形FBC所在的两个平面互相垂直,FB∥AE且FB=2EA.
![]()
(1)证明:平面EFD⊥平面ABFE;
(2)求二面角E﹣FD﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
是
上一点.
(1)求椭圆
的方程;
(2)设
是
分别关于两坐标轴及坐标原点的对称点,平行于
的直线
交
于异于
的两点
.点
关于原点的对称点为
.证明:直线
与
轴围成的三角形是等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的右焦点为
,上顶点为
,直线
的斜率为
,且原点到直线
的距离为
.
(1)求椭圆
的标准方程;
(2)若不经过点
的直线
:
与椭圆
交于
两点,且与圆
相切.试探究
的周长是否为定值,若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若函数
在
上单调递增,求实数
的取值范围;
(2)若函数
有两个不同的零点
.
(ⅰ)求实数
的取值范围;
(ⅱ)求证:
.(其中
为
的极小值点)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产口罩、防护服、消毒水等防疫物品,保障抗疫一线医疗物资供应,在国际社会上赢得一片赞誉.我国某口罩生产企业在加大生产的同时,狠抓质量管理,不定时抽查口罩质量,该企业质检人员从所生产的口罩中随机抽取了100个,将其质量指标值分成以下六组:
,
,
,…,
,得到如下频率分布直方图.
![]()
(1)求出直方图中
的值;
(2)利用样本估计总体的思想,估计该企业所生产的口罩的质量指标值的平均数和中位数(同一组中的数据用该组区间中点值作代表,中位数精确到0.01);
(3)现规定:质量指标值小于70的口罩为二等品,质量指标值不小于70的口罩为一等品.利用分层抽样的方法从该企业所抽取的100个口罩中抽出5个口罩,并从中再随机抽取2个作进一步的质量分析,试求这2个口罩中恰好有1个口罩为一等品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在测试中,客观题难题的计算公式为
,其中
为第
题的难度,
为答对该题的人数,
为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:
![]()
测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):
![]()
(1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;
![]()
(2)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;
(3)定义统计量
,其中
为第
题的实测难度,
为第
题的预估难度(
).规定:若
,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在高一年级一班至六班进行了“社团活动”满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:
班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
频数 | 4 | 5 | 11 | 8 | 10 | 12 |
满意人数 | 3 | 2 | 8 | 5 | 6 | 6 |
现从一班和二班调查对象中随机选取4人进行追踪调查,则选中的4人中恰有2人不满意的概率为___________;若将以上统计数据中学生持满意态度的频率视为概率,在高一年级全体学生中随机抽取3名学生,记其中满意的人数为X,则随机变量X的数学期望是___________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com