精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,以为圆心,椭圆的短半轴长为半径的圆与直线相切.

1求椭圆的标准方程;

2已知点,和面内一点,过点任作直线与椭圆相交于两点,设直线的斜率分别为,若,试求满足的关系式.

【答案】1 2.

【解析】

试题分析:1并且与直线相切,那么圆心到直线的距离再根据计算得到椭圆的标准方程2当斜率不存在时,求出A,B两点的坐标,分别计算代入公式得到的关系式,当斜率存在时,设出直线方程,与椭圆方程联立,得到根与系数的关系,并且表示当满足得到的关系式.

试题解析:1

2当直线斜率不存在时,由,解得,不妨设

因为,所以,所以的关系式为.

当直线的斜率存在时,设点,设直线,联立椭圆整理得:,根系关系略,所以

所以,所以的关系式为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的圆锥中,OP是圆锥的高,AB是底面圆的直径,点C是弧AB的中点,E是线段AC的中点,D是线段PB的中点,且PO=2,OB=1

(1)试在PB上确定一点F,使得EFCOD,并说明理由;

(2)求到面COD的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,其中0<a<1,k∈R。

(Ⅰ)若k=1,求函数f(x)的定义域;

(Ⅱ)若a=,且f(x)在[1,+∞)内总有意义,求k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥底面矩形,分别中点.

(1)求证:

(2)已知点中点,点一动点,当何值时,平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,0为坐标原点.

(1)当为何值时,曲线表示圆;

(2)若曲线与直线交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:

组号

第一组

第二组

第三组

第四组

第五组

分组

(1)求图中的值;

(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;

(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数数列满足).

(1)求数列的通项公式

(2)设,若恒成立求实数的取值范围

(3)是否存在以为首项公比为)的数列使得数列的每一项都是数列的不同的项若存在求出所有满足条件的数列的通项公式若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心在轴上,并且过两点.

(1)求圆的方程;

(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当时,函数的图象有三个不同的交点,求实数的范围;

2)讨论的单调性.

查看答案和解析>>

同步练习册答案