【题目】在三棱柱
中,
,
,
为
的中点.
![]()
(1)证明:
平面
;
(2)若
,点
在平面
的射影在
上,且侧面
的面积为
,求三棱锥
的体积.
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,准线为
,过
的直线与
相交于
两点.
(1)以
为直径的圆与
轴交
两点,若
,求
;
(2)点
在
上,过点
且垂直于
轴的直线与
分别相交于
两点,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了对某种商品进行合理定价,需了解该商品的月销售量
(单位:万件)与月销售单价
(单位:元/件)之间的关系,对近
个月的月销售量
和月销售单价![]()
数据进行了统计分析,得到一组检测数据如表所示:
月销售单价 |
|
|
|
|
|
|
月销售量 |
|
|
|
|
|
|
(1)若用线性回归模型拟合
与
之间的关系,现有甲、乙、丙三位实习员工求得回归直线方程分别为:
,
和
,其中有且仅有一位实习员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确的,并说明理由;
(2)若用
模型拟合
与
之间的关系,可得回归方程为
,经计算该模型和(1)中正确的线性回归模型的相关指数
分别为
和
,请用
说明哪个回归模型的拟合效果更好;
(3)已知该商品的月销售额为
(单位:万元),利用(2)中的结果回答问题:当月销售单价为何值时,商品的月销售额预报值最大?(精确到
)
参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为考察某动物疫苗预防某种疾病的效果,现对200只动物进行调研,并得到如下数据:
未发病 | 发病 | 合计 | |
未注射疫苗 | 20 | 60 | 80 |
注射疫苗 | 80 | 40 | 120 |
合计 | 100 | 100 | 200 |
(附:
)
| 0.05 | 0.01 | 0.005 | 0.001 |
| 3.841 | 6.635 | 7.879 | 10.828 |
则下列说法正确的:( )
A.至少有99.9%的把握认为“发病与没接种疫苗有关”
B.至多有99%的把握认为“发病与没接种疫苗有关”
C.至多有99.9%的把握认为“发病与没接种疫苗有关”
D.“发病与没接种疫苗有关”的错误率至少有0.01%
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥
,底面
为菱形,
,H为
上的点,过
的平面分别交
于点
,且
平面
.
![]()
(1)证明:
;
(2)当
为
的中点,
,
与平面
所成的角为
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在原点,左焦点
、右焦点
都在
轴上,点
是椭圆
上的动点,
的面积的最大值为
,在
轴上方使
成立的点
只有一个.
(1)求椭圆
的方程;
(2)过点
的两直线
,
分别与椭圆
交于点
,
和点
,
,且
,比较
与
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
,且
.过椭圆的右焦点
作长轴的垂线与椭圆,在第一象限交于点
,且满足
.
(1)求椭圆的标准方程;
(2)若矩形
的四条边均与椭圆相切,求该矩形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
,其中常数
.
(1)当
时,求函数
的极值;
(2)若函数
有两个零点
,求实数
的范围;
(3)设
,在区间
内是否存在区间
,使函数
在区间
的值域也是
?请给出结论,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com