【题目】对于数列
,若存在数列
满足
(
),则称数列
是
的“倒差数列”,下列关于“倒差数列”描述正确的是( )
A.若数列
是单增数列,但其“倒差数列”不一定是单增数列;
B.若
,则其“倒差数列”有最大值;
C.若
,则其“倒差数列”有最小值;
D.若
,则其“倒差数列”有最大值.
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4∶2∶1.
![]()
(1)求这些产品质量指标值落在区间[75,85]内的概率;
(2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间[45,75)内的产品件数为X,求X的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:
x(年) | 2 | 3 | 4 | 5 | 6 |
y(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的定义域为
,若满足
,则称函数
为“
型函数”.
(1)判断函数
和
是否为“
型函数”,并说明理由;
(2)设函数
,记
为函数
的导函数.
①若函数
的最小值为1,求
的值;
②若函数
为“
型函数”,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现对这两校参加考试的学生的数学成绩进行统计分析,数据统计显示,考生的数学成绩
服从正态分布
,从甲乙两校100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如图所示的茎叶图:
![]()
(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有
的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关?
(3)从所有参加此次联考的学生中(人数很多)任意抽取3人,记数学成绩在134分以上的人数为
,求
的数学期望.
附:若随机变量
服从正态分布
,则
,![]()
,
.
参考公式与临界值表:
,其中
.
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】意大利人斐波那契在1202年写的《计算之书》中提出一个兔子繁殖问题:假设一对刚出生的小兔一个月后能长成大兔,再过一个月便能生下一对小兔,此后每个月生一对小兔,如此,设第n个月的兔子对数为
,则
,
,
,
,
,….考查数列
的规律,不难发现,
(
),我们称该数列为斐波那契数列.
(1)若数列
的前n项和为
,满足
,
(
,
),试判断数列
是否构成斐波那契数列,说明理由;
(2)若数列
是斐波那契数列,且
,求证:数列
是等比数列;
(3)若数列
是斐波那契数列,求数列
的前n项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学组织高二年级开展对某品牌西瓜市场调研活动.两名同学经过了解得知此品牌西瓜,不仅便宜而且口味还不错,并且每日的销售量y(单位:千克)与销售价格x(元/千克)满足关系式:
,其中
,a为常数.已知销售价格为5元/千克时,每日可售出此品牌西瓜11千克.若此品牌西瓜的成本为3元/千克,试确定销售价格x的值,使该商场日销售此品牌西瓜所获得的利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100名学生的数学成绩,发现都在
内现将这100名学生的成绩按照
,
,
,
,
,
,
分组后,得到的频率分布直方图如图所示,则下列说法正确的是
![]()
![]()
A. 频率分布直方图中a的值为![]()
B. 样本数据低于130分的频率为![]()
C. 总体的中位数
保留1位小数
估计为
分
D. 总体分布在
的频数一定与总体分布在
的频数相等
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com