【题目】在平面直角坐标系
中,椭圆
的参数方程为
(
为参数).以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求椭圆
的极坐标方程和直线
的直角坐标方程;
(2)若点
的极坐标为
,直线
与椭圆
相交于
,
两点,求
的值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的方程为
,
,
为椭圆
的左右顶点,
为椭圆
上不同于
.
的动点,直线
与直线
,
分别交于
,
两点,若
,则过
,
,
三点的圆必过
轴上不同于点
的定点,其坐标为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AC1与底面ABC所成角的余弦值等于( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),在直角梯形
中,
为
的中点,四边形
为正方形,将
沿
折起,使点
到达点
,如图(2),
为
的中点,且
,点
为线段
上的一点.
![]()
(1)证明:
;
(2)当
与
夹角最小时,求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:
,
,
,
,
(单位:元),得到如图所示的频率分布直方图.
![]()
(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);
(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记![]()
.
(1)求方程
的实数根;
(2)设
,
,
均为正整数,且
为最简根式,若存在
,使得
可唯一表示为
的形式
,试求椭圆
的焦点坐标;
(3)已知
,是否存在
,使得
成立,若存在,试求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论中
①若空间向量
,
,则
是
的充要条件;
②若
是
的必要不充分条件,则实数
的取值范围为
;
③已知
,
为两个不同平面,
,
为两条直线,
,
,
,
,则“
”是“
”的充要条件;
④已知向量
为平面
的法向量,
为直线
的方向向量,则
是
的充要条件.
其中正确命题的序号有( )
A.②③B.②④C.②③④D.①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】条件![]()
(1)条件
:复数
,指明
是
的说明条件?若
满足条件
,记
,求![]()
(2)若上问中
,记
时的
在平面直角坐标系的点
存在过
点的抛物线
顶点在原点,对称轴为坐标轴,求抛物线的解析式。
(3)自(2)中
点出发的一束光线经抛物线
上一点
反射后沿平行于抛物线
对称轴方向射出,求:![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com