【题目】在正方体
中,有下列结论:
①
平面
;
②异面直线AD与
所成的角为
;
③三棱柱
的体积是三棱锥
的体积的四倍;
④在四面体
中,分别连接三组对棱的中点的线段互相垂直平分.
其中正确的是________(填出所有正确结论的序号).
科目:高中数学 来源: 题型:
【题目】设函数
满足:①对任意实数
都有
;②对任意
,都有
恒成立;③
不恒为0,且当
时,
.
(1)求
的值;
(2)判断函数
的奇偶性,并给出你的证明.
(3)定义“若存在非零常数
,使得对函数
定义域中的任意一个
,均有
,则称
为以
为周期的周期函数”.试证明:函数
为周期函数,并求出
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第
行的所有数字之和为
,若去除所有为1的项,依次构成数列
,则此数列的前55项和为( )
![]()
A. 4072B. 2026C. 4096D. 2048
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥S—ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,其中AB∥CD,∠ADC=90°,AD=AS=2,AB=1,CD=3,点E在棱CS上,且CE=λCS.
![]()
(1)若
,证明:BE⊥CD;
(2)若
,求点E到平面SBD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A,B,C,D是空间不共面的四点,它们到平面a的距离之比依次为1:1:1:2,则满足条件的平面a的个数是:
A. 1 B. 4 C. 7 D. 8.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,对称轴为直线
的抛物线经过点
和
.
![]()
(1)求抛物线解析式及顶点坐标;
(2)设点
是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,准线为
,若点
在
上,点
在
上,且
是周长为
的正三角形.
(1)求
的方程;
(2)过点
的直线与抛物线相交于
两点,抛物线在点
处的切线与
交于点
,求
面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com