精英家教网 > 高中数学 > 题目详情

【题目】设函数R).

1)求函数R上的最小值;

2)若不等式上恒成立,求的取值范围;

3)若方程上有四个不相等的实数根,求的取值范围.

【答案】(1)(2)3

【解析】

1)通过换元法将函数变形为二次函数,同时利用分类讨论的方法求解最大值;

2)恒成立需要保证即可,对二次函数进行分析,根据取到最大值时的情况得到的范围;

3)通过条件将问题转化为二次函数在给定区间上有两个零点求的范围,这里将所有满足条件的不等式列出来,求解出的范围.

解:(1)令,则,对称轴为

,即

,即

,即

综上可知,

2)由题意可知,的图象是开口向上的抛物线,最大值一定在端点处取得,所以有

3)令.由题意可知,当时,有两个不等实数解,所以原题可转化为内有两个不等实数根.所以有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为为参数).

1)分别求出曲线和直线的直角坐标方程;

2)若点在曲线上,且到直线的距离为1,求满足这样条件的点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实常数,函数.

(1)讨论函数的单调性;

(2)若函数有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左、右焦点分别为,且与抛物线的焦点重合.

(1)求椭圆的标准方程;

(2)若过的直线交椭圆于两点,过的直线交椭圆于两点,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园欲将一块空地规划成如图所示的区域,其中在边长为20米的正方形内种植经红色郁金香,在正方形的剩余部分(即四个直角三角形内)种植黄色郁金香.现要在以为边长的矩形内种植绿色草坪,要求绿色草坪的面积等于黄色郁金香的面积.设米.

1)求之间的函数关系式;

2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求曲线在点处的切线方程;

2)若函数,求的单调区间;并证明:当时,

3)证明:当时,函数有最小值,设最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网络游戏要实现可持续发展,必须要发展绿色网游.为此,国家文化部将从内容上对网游作出强制规定,国家信息产业部还将从技术上加强对网游的强制限制,开发限制网瘾的疲劳系统,现已开发的“游戏防沉迷系统”规则如下:

小时以内(含小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:)与游戏时间(小时)满足关系式:为常数);

小时到小时(含小时)为疲劳时间,玩家在这段时间内获得的经验值为(即累积经验值不变);

③超过小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时间成正比例关系,比例系数为.

1)当时,写出累积经验值与游戏时间的函数关系式,并求出游戏小时的累积经验值;

2)定义“玩家愉悦指数”为累积经验值与游戏时间的比值,记作;若,开发部门希望在健康时间内,这款游戏的“玩家愉悦指数”不低于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1234.

1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;

2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为准线为在抛物线上任取一点的垂线垂足为.

(1)若的值

(2)除的平分线与抛物线是否有其他的公共点并说明理由.

查看答案和解析>>

同步练习册答案