【题目】已知函数
,其中
表示不超过
的最大整数,下列关于
说法正确的有:______.
①
的值域为[-1,1]
②
为奇函数
③
为周期函数,且最小正周期T=4
④
在[0,2)上为单调增函数
⑤
与
的图像有且仅有两个公共点
科目:高中数学 来源: 题型:
【题目】一个盒子里装有标号为
的
张标签,随机的选取两张标签.
(1)若标签的选取是无放回的,求两张标签上的数字为相邻整数的概率;
(2)若标签的选取是有放回的,求两张标签上的数字至少有一个为5的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx
.
(1)若a=4,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,1]内单调递增,求实数a的取值范围;
(3)若x1、x2∈R+,且x1≤x2,求证:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市100000名职业中学高三学生参加了一项综合技能测试,从中随机抽取100名学生的测试成绩,制作了以下的测试成绩
(满分是184分)的频率分布直方图.
![]()
在频率分布直方图的分组中,以各组的区间中点值代表该组的各个值,测试成绩
落入该区间的频率作为测试成绩取该区间中点值的概率.已知甲、乙两名学生的测试成绩分别为168分和170分.
(1)求技能测试成绩
的中位数
,对甲、乙的成绩作出客观的评价;
(2)若市教育局把这次技能测试看作技能大比武,且作出以下奖励规定:
给测试成绩
者颁发奖金
元,
给测试成绩
者颁发奖金元
,求
;
(3)若市教育局把这次技能看作是毕业过关测试,且作出以下规定:
当测试成绩
时,统一交测试费和补测费300元;
当测试成绩
时,统一交测试费100元;
当测试成绩
时,免交测试费且颁发500元奖金.
若
,据此统计:每个测试者平均最多应该交给教育局多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量
(吨)与相应的生产能耗
(吨标准煤)的几组对照数据
|
|
|
|
|
|
|
|
|
|
(1)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据1求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(附:
,
,
,
,其中
,
为样本平均值)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业三月中旬生产
,
,
三种产品共3000件,根据分层随机抽样的结果,企业统计员制作了如下的统计表格:
产品类别 |
|
|
|
产品数量 | 1300 | ||
样本中的数量 | 130 |
由于不小心,表格中
,
产品的有关数据已被污染得看不清楚,统计员只记得样本中
产品的数量比样本中
产品的数量多10.根据以上信息,求该企业生产
产品的数量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,直线
,
.
(1)求证:对
,直线
与圆
总有两个不同的交点
;
(2)求弦
的中点
的轨迹方程,并说明其轨迹是什么曲线;
(3)是否存在实数
,使得原
上有四点到直线
的距离为
?若存在,求出
的范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只口袋有形状大小质地都相同的
只小球,这
只小球上分别标记着数字
.
甲乙丙三名学生约定:
(
)每个不放回地随机摸取一个球;
(
)按照甲乙丙的次序一次摸取;
(
)谁摸取的球的数字对打,谁就获胜.
用有序数组
表示这个试验的基本事件,例如:
表示在一次试验中,甲摸取的是数字
,乙摸取的是数字
,丙摸取的是数字
;
表示在一次实验中,甲摸取的是数
,乙摸取的是数字
,丙摸取的是数字
.
(Ⅰ)列出基本事件,并指出基本事件的总数;
(Ⅱ)求甲获胜的概率;
(Ⅲ)写出乙获胜的概率,并指出甲乙丙三名同学获胜的概率与其摸取的次序是否有关?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com