【题目】某企业三月中旬生产
,
,
三种产品共3000件,根据分层随机抽样的结果,企业统计员制作了如下的统计表格:
产品类别 |
|
|
|
产品数量 | 1300 | ||
样本中的数量 | 130 |
由于不小心,表格中
,
产品的有关数据已被污染得看不清楚,统计员只记得样本中
产品的数量比样本中
产品的数量多10.根据以上信息,求该企业生产
产品的数量.
科目:高中数学 来源: 题型:
【题目】为美化城市环境,相关部门需对一半圆形中心广场进行改造出新,为保障市民安全,施工队对广场进行围挡施工.如图,围挡经过直径的两端点A,B及圆周上两点C,D围成一个多边形ABPQR,其中AR,RQ,QP,PB分别与半圆相切于点A,D,C,B.已知该半圆半径OA长30米,∠COD为60°,设∠BOC为
.
(1)求围挡内部四边形OCQD的面积;
(2)为减少对市民出行的影响,围挡部分面积要尽可能小.求该围挡内部多边形ABPQR面积的最小值?并写出此时
的值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
(a∈R).
(Ⅰ)求f(x)在区间[-1,2]上的最值;
(Ⅱ)若过点P(1,4)可作曲线y=f(x)的3条切线,求实数a的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
表示不超过
的最大整数,下列关于
说法正确的有:______.
①
的值域为[-1,1]
②
为奇函数
③
为周期函数,且最小正周期T=4
④
在[0,2)上为单调增函数
⑤
与
的图像有且仅有两个公共点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=1-
(a>0且a≠1)是定义在(-∞,+∞)上的奇函数.
(1)求a的值;
(2)证明:函数f(x)在定义域(-∞,+∞)内是增函数;
(3)当x∈(0,1]时,tf(x)≥2x-2恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,抛物线
,点
,设直线
与
交于不同的两点
、
.
(1)若直线
轴,求直线
的斜率的取值范围;
(2)若直线
不垂直于
轴,且
,证明:直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用红、黄、蓝三种不同的颜色给大小相同的三个圆随机涂色,每个圆只涂一种颜色.设事件
“三个圆的颜色全不相同”,事件
“三个圆的颜色不全相同”,事件
“其中两个圆的颜色相同”,事件
“三个圆的颜色全相同”.
(1)写出试验的样本空间.
(2)用集合的形式表示事件
.
(3)事件
与事件
有什么关系?事件
和
的交事件与事件
有什么关系?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com