【题目】已知一列函数
,设直线
与
的交点为
,点
在
轴和直线
上的射影分别为
,记
的面积为
,
的面积为
.
(1)求
的最小值,并指出此时
的取值;
(2)在
中任取一个函数,求该函数在
上是增函数或在
上是减函数的概率;
(3)是否存在正整数
,使得
成立,若存在,求出
的值,若不存在,请说明理由.
【答案】(1)
,
(2)
(3)不存在
【解析】
(1)根据题意表示出
,结合基本不等式即可求得最小值及取得最小值时
的值.
(2)根据函数表达式,结合打勾函数的图像与性质,即可判断在
上是增函数或在
上是减函数的所有情况,即可求得在
中满足条件的概率.
(3)由直线
与
的交点为
,即可求得点
的坐标.由点
在
轴和直线
上的射影分别为
,结合点到直线距离公式即可求得
的坐标.表示出
的面积
,
的面积
.将、
的表达式代入等式
中,通过化简变形,检验即可得知
的值,若不存在.
(1)函数![]()
所以![]()
由基本不等式可知, ![]()
当且仅当
时取等号,即
时取等号
所以
的最小值为
,当
时取等号
(2)因为
结合对勾函数的图像与性质
所以![]()
![]()
![]()
![]()
在
内满足单调递增,而
不满足.因而满足在
内满足单调递增的函数共有49个.
因为
,而
而![]()
![]()
满足在
内单调递减,所以此时共有
所以该函数在
上是增函数或在
上是减函数的个数共有
个
即该函数在
上是增函数或在
上是减函数的概率为![]()
(3)因为直线
与
的交点为![]()
所以![]()
点
在
轴上的射影为
,所以![]()
点
在直线
上的射影为
,直线方程化为一般式可得![]()
则由点到直线距离公式可得![]()
从
向
轴作垂直,交
于点E
则
所以![]()
![]()
画出函数图像如下图所示:
![]()
所以
的面积为![]()
的面积为![]()
![]()
假设存在正整数
,使得
成立,代入可得
![]()
将式子化简可得![]()
当
时,等式左边等于20,等式右边等于17,等式不成立
当
时,等式左边等于32,等式右边等于68,等式不成立
当
时,等式左边小于0,等式右边大于0,等式不成立.
综上可知,不存在正整数
,使得
成立
科目:高中数学 来源: 题型:
【题目】某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为
公顷和
公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为
公顷和
公顷.
![]()
(1)设
,用关于
的函数
表示
,并求
在区间
上的最大值的近似值(精确到0.001公顷);
(2)如果
,并且
,试分别求出
、
、
、
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是以d为公差的等差数列,{bn}数列是以q为公比的等比数列.
(1)若数列{bn}的前n项和为Sn,且a1=b1=d=2,S3<a1003+5b2﹣2010,求整数q的值;
(2)在(1)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s﹣r)是(t﹣r)的约数),求证:数列{bn}中每一项都是数列{an}中的项.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
,对坐标平面上任意一点
,定义
,若两点
,
,满足
,称点
,
在曲线
同侧;
,称点
,
在曲线
两侧.
(1)直线
过原点,线段
上所有点都在直线
同侧,其中
,
,求直线
的倾斜角的取值范围;
(2)已知曲线
,
为坐标原点,求点集
的面积;
(3)记到点
与到
轴距离和为
的点的轨迹为曲线
,曲线
,若曲线
上总存在两点
,
在曲线
两侧,求曲线
的方程与实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某温室大棚规定,一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工作作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y(单位:度)与时间t(单位:小时,
)近似地满足函数
关系,其中,b为大棚内一天中保温时段的通风量。
(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1℃);
(2)若要保持一天中保温时段的最低温度不小于17℃,求大棚一天中保温时段通风量的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在
上的函数
,若函数
满足:①在区间
上单调递减,②存在常数
,使其值域为
,则称函数
是函数
的“渐近函数”.
(1)判断函数
是不是函数
的“渐近函数”,说明理由;
(2)求证:函数
不是函数
的“渐近函数”;
(3)若函数
,
,求证:当且仅当
时,
是
的“渐近函数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
各项不为0,前
项和为
.
(1)若
,
,求数列
的通项公式;
(2)在(1)的条件下,已知
,分别求
和
的表达式;
(3)证明:
是等差数列的充要条件是:对任意
,都有:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),曲线
的参数方程为
(
为参数),以该直角坐标系的原点
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)分别求曲线
的极坐标方程和曲线
的直角坐标方程;
(Ⅱ)设直线
交曲线
于
,
两点,交曲线
于
,
两点,求
的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com