【题目】已知数列
各项不为0,前
项和为
.
(1)若
,
,求数列
的通项公式;
(2)在(1)的条件下,已知
,分别求
和
的表达式;
(3)证明:
是等差数列的充要条件是:对任意
,都有:
.
【答案】(1)
;(2)
4(
)n﹣4,
;(3)证明见解析
【解析】
根据
与
的关系式,
,计算即可得出答案.
(2)将
各项配凑成二项式展开式的形式,再利用二项式展开式的性质计算即可;关于
,利用倒序求和法,再用二项式展开式化简,即可得出答案.
(3)必要性:利用裂项相消法化简即可得证;充分性:两次作差变形即可说明其为等差数列.
(1) 因为
,所以![]()
当
时,![]()
当
时,有![]()
即![]()
所以数列
为以
为首项,
为公比的等比数列.
所以
.
(2)
,
所以![]()
所以![]()
所以![]()
①
②
①+②:![]()
![]()
(3)证明:先证必要性.设数列
的公差为
,若
,则不等式显然成立.
若
,则![]()
.
再证充分性:依题意有
,
,
化简得:
同理可得:![]()
得:
,即
.
所以数列
为等差数列.
科目:高中数学 来源: 题型:
【题目】已知一列函数
,设直线
与
的交点为
,点
在
轴和直线
上的射影分别为
,记
的面积为
,
的面积为
.
(1)求
的最小值,并指出此时
的取值;
(2)在
中任取一个函数,求该函数在
上是增函数或在
上是减函数的概率;
(3)是否存在正整数
,使得
成立,若存在,求出
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社会机构为了调查对手机游戏的兴趣与年龄的关系,通过问卷调查,整理数据得如下
列联表:
![]()
(1)根据列联表,能否有99.9%的把握认为对手机游戏的兴趣程度与年龄有关?
(2)若已经从40岁以下的被调查者中用分层抽样的方式抽取了5名,现从这5名被调查者中随机选取3名,求这3名被调查者中恰有1名对手机游戏无兴趣的概率.
附:
参考数据:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面ABCD为菱形,且∠ABC=60°,
平面ABCD,
,点E,F为PC,PA的中点.
![]()
(1)求证:平面BDE⊥平面ABCD;
(2)二面角E—BD—F的大小;
(3)设点M在PB(端点除外)上,试判断CM与平面BDF是否平行,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是
(
≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是
.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是
![]()
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某沿海地区计划铺设一条电缆联通A,B两地,A地位于东西方向的直线MN上的陆地处,B地位于海上一个灯塔处,在A地用测角器测得
,在A地正西方向4km的点C处,用测角器测得
.拟定铺设方案如下:在岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB在水下铺设.预算地下、水下的电缆铺设费用分别为2万元/km和4万元/km,设
,
,铺设电缆的总费用为
万元.
![]()
(1)求函数
的解析式;
(2)试问点P选在何处时,铺设的总费用最少,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)
为曲线
上的动点,点
在线段
上,且满足
,求点
的轨迹
的直角坐标方程;
(2)设点
的极坐标为
,点
在曲线
上,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午
这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段
记作区间
,
记作
,
记作
,
记作
,例如:10点04分,记作时刻64.
![]()
(1)估计这600辆车在
时间段内通过该收费点的时刻的平均值
同一组中的数据用该组区间的中点值代表
;
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在
之间通过的车辆数为
,求
的分布列与数学期望;
(3)由大数据分析可知,车辆在每天通过该收费点的时刻服从正态分布
,其中
可用这600辆车在
之间通过该收费点的时刻的平均值近似代替,
可用样本的方差近似代替
同一组中的数据用该组区间的中点值代表
,已知大年初五全天共有1000辆车通过该收费点,估计在
之间通过的车辆数
结果保留到整数
.
参考数据:若
,则
;
;
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com