精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=cos4x﹣2sinxcosx﹣sin4x.
(1)求f(x)的最小正周期及对称中心;
(2)当x∈[0, ]时,求f(x)的单调递减区间.

【答案】
(1)解:f(x)=(cos4x﹣sin4x)﹣2sinxcosx=(cos2x﹣sin2x)﹣sin2x

=cos2x﹣sin2x=cos(2x+ ).

∴f(x)的最小正周期T= =π.

∴2x+ =kπ+ ,k∈Z,

∴x= π+ ,k∈Z,

∴对称中心( π+ ,0),k∈Z


(2)解:令2kπ≤2x+ ≤2kπ+π,k∈Z,

∴kπ﹣ ≤x≤kπ+ ,k∈Z,

∵x∈[0, ],

∴f(x)的单调递减区间为[0, ]


【解析】(1)两角差的余弦公式化简,再根据周期的定义和对称中心的定义即可求出,(2)根据余弦函数的图象和性质即可求出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x,第二次出现的点数为y.
(1)求事件“x+y≤3”的概率;
(2)求事件“|x﹣y|=2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图几何体中,边长为正方形,直角梯形,

(1)异面直线所成角的大小

(2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的夹角为120°,且| |=4,| |=2.求:
(1)( ﹣2 )( + );
(2)|3 ﹣4 |.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元). (Ⅰ)将y表示为x的函数:
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体A1B1C1D1﹣ABCD中,AD=CD=4,AD1=5,M是线段B1D1的中点.
(1)求证:BM∥平面D1AC;
(2)求直线DD1与平面D1AC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 )为奇函数,且相邻两对称轴间的距离为.

(1)当时,求的单调递减区间;

(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB、DC不重合).
(1)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;
(2)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x);
(3)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正方形ABCD沿对角线BD折成直二面角A﹣BD﹣C,有如下四个结论:
(1)AC⊥BD;
(2)△ACD是等边三角形
(3)AB与平面BCD所成的角为60°;
(4)AB与CD所成的角为60°.
则正确结论的序号为

查看答案和解析>>

同步练习册答案