【题目】选修4-4:极坐标与参数方程
已知在一个极坐标系中点
的极坐标为
.
(1)求出以
为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形.
(2)在直角坐标系中,以圆
所在极坐标系的极点为原点,极轴为
轴的正半轴建立直角坐标系,点
是圆
上任意一点,
,
是线段
的中点,当点
在圆
上运动时,求点
的轨迹的普通方程.
科目:高中数学 来源: 题型:
【题目】某文化创意公司开发出一种玩具(单位:套)进行生产和销售.根据以往经验,每月生产x套玩具的成本p由两部分费用(单位:元)构成:
.固定成本(与生产玩具套数x无关),总计一百万元;b.生产所需的直接总成本
.
(1)问:该公司每月生产玩具多少套时,可使得平均每套所需成本费用最少?此时每套玩具的成本费用是多少?
(2)假设每月生产出的玩具能全部售出,但随着x的增大,生产所需的直接总成本在急剧增加,因此售价也需随着x的增大而适当增加.设每套玩具的售价为q元,
(
).若当产量为15000套时利润最大,此时每套售价为300元,试求
、b的值.(利润=销售收入-成本费用)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的左、右焦点为
,右顶点为
,上顶点为
,若
,
与
轴垂直,且
.
(1)求椭圆方程;
(2)过点
且不垂直于坐标轴的直线与椭圆交于
两点,已知点
,当
时,求满足
的直线
的斜率
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角坐标系
中,已知点
,
,直线![]()
将
分成两部分,记左侧部分的多边形为
.设
各边长的平方和为
,
各边长的倒数和为
.
![]()
(Ⅰ) 分别求函数
和
的解析式;
(Ⅱ)是否存在区间
,使得函数
和
在该区间上均单调递减?若存在,求
的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知多面体
的直观图(图1)和它的三视图(图2),
![]()
(1)在棱
上是否存在点
,使得
平面
?若存在,求
的值,并证明你的结论;若不存在,说明理由;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某旅游区拟建一主题游乐园,该游乐区为五边形区域ABCDE,其中三角形区域ABE为主题游乐区,四边形区域为BCDE为休闲游乐区,AB、BC,CD,DE,EA,BE为游乐园的主要道路(不考虑宽度).![]()
.
![]()
(I)求道路BE的长度;
(Ⅱ)求道路AB,AE长度之和的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com