【题目】如图所示,已知多面体
的直观图(图1)和它的三视图(图2),
![]()
(1)在棱
上是否存在点
,使得
平面
?若存在,求
的值,并证明你的结论;若不存在,说明理由;
(2)求二面角
的余弦值.
【答案】(1)存在,证明见解析,
;(2)
.
【解析】
(1)根据三视图中的线段长度,判断
交点的位置,取
靠近
的一个三等分点,进行分析证明并求比值;
(2)建立空间直角坐标系,利用平面法向量的余弦值计算出二面角的余弦值.
(1)连接
,取
靠近
点的一个三等分点
,连接
,
根据三视图可知
,所以
,
又因为
,所以
,所以
,
又因为
平面
,
平面
,
所以
平面
,故存在
满足条件且
为
靠近
点的一个三等分点,
此时
;
![]()
(2)取
为空间直角坐标系的
轴,建立空间直角坐标系如下图:
![]()
根据三视图可知:
,
设平面
的一个法向量
,平面
的一个法向量
,
因为
,
,
,
所以
,取
,所以
,
所以
,取
,所以
,
所以
,
根据立体图形可知二面角
的平面角为钝角,
所以二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为
,其范围为
,分别有五个级别:
,畅通;
,基本畅通;
,轻度拥堵;
,中度拥堵;
,严重拥堵.在晚高峰时段(
),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.
![]()
(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;
(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;
(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是正方形,平面
平面
,
、
分别为
、
中点,
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的正弦值;
(Ⅲ)在棱
上是否存在一点
,使
平面
?若存在,指出点
的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的各项排成如图所示的三角形数阵,数阵中每一行的第一个数
构成等差数列
,
是
的前
项和,且
,
.
![]()
(1)若数阵中从第3行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知
,求
的值;
(2)设
,当
时,对任意
,不等式
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:极坐标与参数方程
已知在一个极坐标系中点
的极坐标为
.
(1)求出以
为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形.
(2)在直角坐标系中,以圆
所在极坐标系的极点为原点,极轴为
轴的正半轴建立直角坐标系,点
是圆
上任意一点,
,
是线段
的中点,当点
在圆
上运动时,求点
的轨迹的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )
![]()
A. 消耗1升汽油,乙车最多可行驶5千米
B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,动点P到定点F(1,0)的距离比到定直线x=-2的距离小1.
(1)求动点P的轨迹C的方程;
(2)若直线l与(1)中轨迹C交于A,B两点,通过A和原点O的直线交直线x=-1于D,求证:直线DB平行于x轴.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为比较甲乙两地某月12时的气温状况,选取该月5天中12时的气温数据(单位:
)制成如图所示的茎叶图,考虑以下结论:
![]()
①甲地该月12时的平均气温低于乙地该月12时的平均气温;
②甲地该月12时的平均气温高于乙地该月12时的平均气温;
③甲地该月12时的气温的标准差小于乙地该月12时的气温的标准差;
④甲地该月12时的气温的标准差大于乙地该月12时的气温的标准差.
其中根据茎叶图能得到的统计结论的编号为( )
A.①③B.②③C.①④D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com