已知
为椭圆
的左、右焦点,
是椭圆上一点,若
。
(1)求椭圆方程;
(2)若
求
的面积。
科目:高中数学 来源: 题型:解答题
平面直角坐标系
和极坐标系
的原点与极点重合,
轴的正半轴与极轴重合,单位长度相同。已知曲线
的极坐标方程为
,曲线
的参数方程为![]()
,射线
,
,
与曲线
交于极点
以外的三点A,B,C.
(1)求证:
;
(2)当
时,B,C两点在曲线
上,求
与
的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在坐标原点,两个焦点分别为
,![]()
,点
在椭圆
上,过点
的直线
与抛物线
交于
两点,抛物线
在点
处的切线分别为
,且
与
交于点
.
(1) 求椭圆
的方程;
(2) 是否存在满足
的点
? 若存在,指出这样的点
有几个(不必求出点
的坐标); 若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的方程为
左、右焦点分别为F1、F2,焦距为4,点M是椭圆C上一点,满足![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)分别作直线PA,PB交椭圆C于A,B两点,设直线PA,PB的斜率分别为k1,k2,
,求证:直线AB过定点,并求出直线AB的斜率k的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点是F抛物线
与椭圆
的公共焦点,且椭圆的离心率为![]()
![]()
(1)求椭圆的方程;
(2)过抛物线上一点P,作抛物线的切线
,切点P在第一象限,如图,设切线
与椭圆相交于不同的两点A、B,记直线OP,FA,FB的斜率分别为
(其中
为坐标原点),若
,求点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
,点B是
轴上的动点,过B作AB的垂线
交
轴于点Q,若
,
.![]()
(1)求点P的轨迹方程;
(2)是否存在定直线
,以PM为直径的圆与直线
的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆O:
,直线l:
与椭圆C:
相交于P、Q两点,O为原点.
(Ⅰ)若直线l过椭圆C的左焦点,且与圆O交于A、B两点,且
,求直线l的方程;
(Ⅱ)如图,若
重心恰好在圆上,求m的取值范围.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com