【题目】已知椭圆
的左、右焦点分别为
、
,
是椭圆上一动点(与左、右顶点不重合).已知
的面积的最大值为
,椭圆
的离心率为
.
(1)求椭圆
的方程;
(2)过
的直线
交椭圆
于
、
两点,过
作
轴的垂线交椭圆
与另一点
(
不与
、
重合).设
的外心为
,求证
为定值.
【答案】(1)
;(2)证明见解析.
【解析】
(1)由已知条件得出关于
、
、
的方程组,求出
、
的值,进而可得出椭圆
的方程;
(2)由题意可知直线
的斜率存在,可设直线
的方程为
,将直线
的方程与椭圆的方程联立,列出韦达定理,利用弦长公式求出
,利用线段
和
的垂直平分线的交点得出点
的坐标,进而得出
,再对
进行化简即可.
(1)
的面积的最大值为
,
由已知条件得
,解得
,因此,椭圆
的方程为
;
(2)由题意可知,直线
的斜率存在,且不为零,易知点
,
设直线
的方程为
,设点
、
,可知点
,
联立
,消去
得
,
由韦达定理得
,
,
由弦长公式得
,
,
,
所以,线段
的中点为
,
则线段
的垂直平分线的方程为
,即
,
线段
的垂直平分线为
轴,在直线方程
中,令
,得
.
则点
,
,
因此,
(定值).
科目:高中数学 来源: 题型:
【题目】在某单位的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了80个面包,以x(单位:个,
)表示面包的需求量,T(单位:元)表示利润.
![]()
(1)求食堂面包需求量的平均数;
(2)求T关于x的函数解析式;
(3)根据直方图估计利润T不少于100元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“绿水青山就是金山银山”的生态文明发展理念已经深入人心,这将推动新能源汽车产业的迅速发展.下表是2019年我国某地区新能源乘用车的前5个月销售量与月份的统计表:
月份代码 | 1 | 2 | 3 | 4 | 5 |
销售量 | 0.5 | 0.6 | 1 | 1.4 | 1.5 |
(1)利用线性相关系数
判断
与
的线性相关性,并求出线性回归方程
(2)根据线性回归方程预报2019年6月份的销售量约为多少万辆?
参考公式:
,
;回归直线:
.
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
.
(1)若椭圆
的离心率为
,求
的值;
(2)若过点
任作一条直线
与椭圆
交于不同的两点
,在
轴上是否存在点
,使得
, 若存在,求出点
的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解高一年级学生的智力水平,某校按1:10的比例对700名高一学生按性别分别进行“智力评分”抽样调查,测得“智力评分”的频数分布表如表1、表2所示.
表1:男生“智力评分”频数分布表
智力评分/分 |
|
|
|
|
|
|
频数 | 2 | 5 | 14 | 13 | 4 | 2 |
表2:女生“智力评分”频数分布表
智力评分/分 |
|
|
|
|
|
|
频数 | 1 | 7 | 12 | 6 | 3 | 1 |
![]()
(1)求高一年级的男生人数,并完成下面男生“智力评分”的频率分布直方图;
(2)估计该校高一年级学生“智力评分”在
内的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(请写出式子在写计算结果)有4个不同的小球,4个不同的盒子,现在要把球全部放入盒内:
(1)共有多少种方法?
(2)若每个盒子不空,共有多少种不同的方法?
(3)恰有一个盒子不放球,共有多少种放法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋内有3个不同的红球,4个不同的白球
(1)从中任取3个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取4个球,使总分不少于6分的取法有多少种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆盘上有一指针,开始时指向圆盘的正上方.指针每次顺时针方向绕圆盘中心转动一角
,且
,经2004次旋转,第一次回到了其初始位置,即又指向了圆盘的正上方.试问:
有多少个可能的不同值?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com