【题目】如图,直三棱柱
中,
,
,
,P为
的中点.
![]()
(1)证明:
平面
;
(2)设E为BC的中点,线段
上是否存在一点Q,使得
平面
?若存在,求四棱锥
的体积;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】如图1,在
中,
,
,
为
的中点,将
沿
折起,得到如图2所示的三棱锥
,二面角
为直二面角.
![]()
(1)求证:平面
平面
;
(2)设
分别为
的中点,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解用户对其产品的满意度,从甲、乙两地区分别随机调查了100个用户,根据用户对产品的满意度评分,分别得到甲地区和乙地区用户满意度评分的频率分布直方图.
![]()
若甲地区和乙地区用户满意度评分的中位数分别为m1,m2;平均数分别为s1,s2,则下面正确的是( )
A. m1>m2,s1>s2B. m1>m2,s1<s2
C. m1<m2,s1<s2D. m1<m2,s1>s2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市教学研究室为了对今后所出试题的难度有更好的把握,提高命题质量,对该市高三理科数学试卷的得分情况进行了调研.从全市参加考试的理科考生中随机抽取了100名考生的数学成绩(满分150分),将数据分成9组:
,
,
,
,
,
,
,
,
,并整理得到如图所示的频率分布直方图.用统计的方法得到样本标准差
,以频率值作为概率估计值.
![]()
(Ⅰ)根据频率分布直方图,求抽取的100名理科考生数学成绩的平均分
及众数
;
(Ⅱ)用频率估计概率,从该市所有高三理科考生的数学成绩中随机抽取3个,记理科数学成绩位于区间
内的个数为
,求
的分布列及数学期望
;
(Ⅲ)从该市高三理科数学考试成绩中任意抽取一份,记其成绩为
,依据以下不等式评判(
表示对应事件的概率):
①
,②
,
③
,其中
.
评判规则:若至少满足以上两个不等式,则给予这套试卷好评,否则差评.试问:这套试卷得到好评还是差评?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线
的焦点为
,直线
与抛物线交于
两点.
(1)若
过点
,且
,求
的斜率;
(2)若
,且
的斜率为
,当
时,求
在
轴上的截距的取值范围(用
表示),并证明
的平分线始终与
轴平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间
与乘客等候人数
之间的关系,经过调查得到如下数据:
间隔时间( | 10 | 11 | 12 | 13 | 14 | 15 |
等侯人数( | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数
,再求
与实际等候人数
的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.
(1)若选取的是后面4组数据,求
关于
的线性回归方程
,并判断此方程是否是“恰当回归方程”;
(2)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?
附:对于一组数据
,
,……,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,
的顶点
,
,且
、
、
成等差数列.
(1)求
的顶点
的轨迹方程;
(2)直线
与顶点
的轨迹交于
两点,当线段
的中点
落在直线
上时,试问:线段
的垂直平分线是否恒过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一块以点
为圆心,半径为
百米的圆形草坪,草坪内距离
点
百米的
点有一用于灌溉的水笼头,现准备过点
修一条笔直小路交草坪圆周于
两点,为了方便居民散步,同时修建小路
,其中小路的宽度忽略不计.
![]()
(1)若要使修建的小路的费用最省,试求小路的最短长度;
(2)若要在
区域内(含边界)规划出一块圆形的场地用于老年人跳广场舞,试求这块圆形广场的最大面积.(结果保留根号和
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com