【题目】在底面是正三角形、侧棱垂直于底面的三棱柱ABC﹣A1B1C1中,底面边长为a,侧棱长为2a,点M是A1B1的中点.
![]()
(1)证明:MC1⊥AB1.
(2)求直线AC1与侧面BB1C1C所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,其短轴的两个端点与长轴的一个端点构成的三角形的面积为
.
(1)求椭圆
的标准方程;
(2)直线
与圆
相切,并与椭圆
交于不同的两点
和
,若
为坐标原点),求线段
长度的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位同学分别做下面这道题目:在平面直角坐标系中,动点
到
的距离比
到
轴的距离大
,求
的轨迹.甲同学的解法是:解:设
的坐标是
,则根据题意可知
,化简得
; ①当
时,方程可变为
;②这表示的是端点在原点、方向为
轴正方向的射线,且不包括原点; ③当
时,方程可变为
; ④这表示以
为焦点,以直线
为准线的抛物线;⑤所以
的轨迹为端点在原点、方向为
轴正方向的射线,且不包括原点和以
为焦点,以直线
为准线的抛物线. 乙同学的解法是:解:因为动点
到
的距离比
到
轴的距离大
. ①如图,过点
作
轴的垂线,垂足为
. 则
.设直线
与直线
的交点为
,则
; ②即动点
到直线
的距离比
到
轴的距离大
; ③所以动点
到
的距离与
到直线
的距离相等;④所以动点
的轨迹是以
为焦点,以直线
为准线的抛物线; ⑤甲、乙两位同学中解答错误的是________(填“甲”或者“乙”),他的解答过程是从_____处开始出错的(请在横线上填写① 、②、③、④ 或⑤ ).
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题“若
.则a,b中至少有一个不小于1”的逆命题是一个真命题
B.命题“负数的平方是正数”是特称命题
C.命题“设a,
,若
,则
或
”是一个真命题
D.常数数列既是等差数列也是等比数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线
的焦点F为圆C:
的圆心.
求抛物线的方程与其准线方程;
直线l与圆C相切,交抛物线于A,B两点;
若线段AB中点的纵坐标为
,求直线l的方程;
求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
:
的左、右焦点分别为
,
轴,直线
交
轴于
点,
,
为椭圆
上的动点,
的面积的最大值为1.
![]()
(1)求椭圆
的方程;
(2)过点
作两条直线与椭圆
分别交于
且使
轴,如图,问四边形
的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)若不过原点
的直线
与椭圆
相交于
两点,与直线
相交于点
,且
是线段
的中点,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com