【题目】已知定义在实数集
上的奇函数
,且当
时,
.
(Ⅰ)求函数
在
上的解析式;
(Ⅱ)判断
在
上的单调性;
(Ⅲ)当
取何值时,方程
在
上有实数解?
【答案】(Ⅰ)
;(Ⅱ)见解析;(Ⅲ)
或
或
.
【解析】试题分析:(Ⅰ)由
是
上的奇函数,得
,且设
,则
,
即可得解;
(Ⅱ)设
, 则
,判断正负即可下结论;
(Ⅲ)由函数单调性求得
在
的值域即可.
试题解析:
(Ⅰ)因为
是
上的奇函数,
所以
,
设
,则
,
因为
,
所以
时,
,
所以
.
(Ⅱ)证明:设
,
则
,
因为
,
所以
,
所以
,
所以
在
上为减函数.
(Ⅲ)因为
在
上为减函数,
所以
即
,
同理,
上时,
,
又
,
所以当
或
或
时方程
在
上有实数解.
点睛: 证明函数单调性的一般步骤:(1)取值:在定义域上任取
,并且
(或
);(2)作差:
,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断
的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.
科目:高中数学 来源: 题型:
【题目】三国时期著名的数学家刘徽对推导特殊数列的求和公式很感兴趣,创造并发展了许多算法,展现了聪明才智.他在《九章算术》“盈不足”章的第19题的注文中给出了一个特殊数列的求和公式.这个题的大意是:一匹良马和一匹驽马由长安出发至齐地,长安与齐地相距3000里(1里=500米),良马第一天走193里,以后每天比前一天多走13里.驽马第一天走97里,以后每天比前一天少走半里.良马先到齐地后,马上返回长安迎驽马,问两匹马在第几天相遇( )
A. 14天B. 15天C. 16天D. 17天
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点
是函数
的图象的一个对称中心,且点
到该图象的对称轴的距离的最小值为
.
①
的最小正周期是
;
②
的值域为
;
③
的初相
为
;
④
在
上单调递增.
以上说法正确的个数是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱锥O﹣ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
![]()
(1)求异面直线BE与AC所成角的余弦值;
(2)求直线BE和平面ABC的所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三角形内,我们将三条边的中线的交点称为三角形的重心,且重心到任一顶点的距离是到对边中点距离的两倍类比上述结论:在三棱锥中,我们将顶点与对面重心的连线段称为三棱锥的“中线”,将三棱锥四条中线的交点称为它的“重心”,则棱锥重心到顶点的距离是到对面重心距离的______倍![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙二人进行定点投篮比赛,已知甲、乙两人每次投进的概率均为
,两人各投一次称为一轮投篮.
求乙在前3次投篮中,恰好投进2个球的概率;
设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量
,求
的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据下列条件解三角形,有两解的有( )
A.已知a
,b=2,B=45°B.已知a=2,b
,A=45°
C.已知b=3,c
,C=60°D.已知a=2
,c=4,A=45°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下命题为假命题的是( )
A. “若m>0,则方程x2+x-m=0有实数根”的逆命题
B. “面积相等的三角形全等”的否命题
C. “若xy=1,则x,y互为倒数”的逆命题
D. “若A∪B=B,则AB”的逆否命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.
![]()
(1)求图中
的值;
(2)求综合评分的中位数;
(3)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中至多有一个一等品的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com