【题目】点
是函数
的图象的一个对称中心,且点
到该图象的对称轴的距离的最小值为
.
①
的最小正周期是
;
②
的值域为
;
③
的初相
为
;
④
在
上单调递增.
以上说法正确的个数是( )
A.
B.
C.
D. ![]()
【答案】D
【解析】
由条件利用正弦函数的周期性、单调性、最值,以及图象的对称性,即可得出结论.
∵点P(﹣
,1)是函数f(x)=sin(ωx+φ)+m(ω>0,|φ|<
)的图象的一个对称中心,∴m=1,ω(﹣
)+φ=kπ,k∈Z.
∵点P到该图象的对称轴的距离的最小值为
,∴ω=2,
∴φ=kπ+
, k∈Z,又|φ|<
∴φ=
,f(x)=sin(2x+
)+1.
故①f(x)的最小正周期是π,正确;②f(x)的值域为[0,2],正确;
③f(x)的初相φ为
,正确;
④在[
,2π]上,2x+
∈[
,
],根据函数的周期性,函数单调性与 [﹣
,
]时的单调性相同,故函数f(x)单调递增,故④正确,
故选:D.
科目:高中数学 来源: 题型:
【题目】表示一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:
![]()
①骑自行车者比骑摩托车者早出发3 h,晚到1 h;
②骑自行车者是变速运动,骑摩托车者是匀速运动;
③骑摩托车者在出发1.5 h后追上了骑自行车者;
④骑摩托车者在出发1.5 h后与骑自行车者速度一样.
其中,正确信息的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直角
的三边长
,满足
.
(Ⅰ)在
之间插入
个数,使这
个数构成以
为首项的等差数列
,且它们的和为
,求斜边的最小值;
(Ⅱ)已知
均为正整数,且
成等差数列,将满足条件的三角形的面积从小到大排成一列
,且
,求满足不等式
的所有
的值;
(Ⅲ)已知
成等比数列,若数列
满足
,证明:数列
中的任意连续三项为边长均可以构成直角三角形,且
是正整数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们称一个非负整数集合
(非空)为好集合,若对任意
,或者
,或者
.以下记
为
的元素个数.
(Ⅰ)给出所有的元素均小于
的好集合;(给出结论即可)
(Ⅱ)求出所有满足
的好集合;(同时说明理由)
(Ⅲ)若好集合
满足
,求证:
中存在元素
,使得
中所有元素均为
的整数倍.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某银行对某市最近5年住房贷款发放情况(按每年6月份与前一年6月份为1年统计)作了统计调查,得到如下数据:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
贷款 | 50 | 60 | 70 | 80 | 100 |
(1)将上表进行如下处理:
,
得到数据:
| 1 | 2 | 3 | 4 | 5 |
| 0 | 1 | 2 | 3 | 5 |
试求
与
的线性回归方程
,再写出
与
的线性回归方程
.
(2)利用(1)中所求的线性回归方程估算2019年房贷发放数额.
参考公式:
, ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的参数方程为
,其中
为参数,且
在直角坐标系
中,以坐标原点
为极点,以
轴正半轴为极轴建立极坐标系.
(1)求曲线
的极坐标方程;
(2)设
是曲线
上的一点,直线
被曲线
截得的弦长为
,求
点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(其中
,
,
)的图象与
轴的交点中,相邻两个交点之间的距离为
,且图象上一个最高点为
.
(1)求
的解析式;
(2)先把函数
的图象向左平移
个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数
的图象,试写出函数
的解析式.
(3)在(2)的条件下,若存在
,使得不等式
成立,求实数
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com