精英家教网 > 高中数学 > 题目详情

【题目】选修4-5:不等式选讲

已知函数.

(1)求不等式的解集;

(2)若恒成立,求的取值范围.

【答案】(1)(2)

【解析】试题分析:(1)根据零点分段法分为三种情形,分别解出不等式,再取并集即可;(2)法一恒成立等价于恒成立,利用绝对值三角不等式,求得取得最小值,即可求得的取值范围;法二:设,则根据绝对值三角不等式求得得最小值,从而求得的取值范围.

试题解析:(1)因为

所以当时,由

时,由

时,由.

综上,的解集为.

(2)法一

因为,当且仅当取等号,

所以当时,取得最小值.

所以当时,取得最小值

,即的取值范围为.

法二:设,则

时,取得最小值

所以当时,取得最小值

时,即的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设单位向量 对于任意实数λ都有| + |≤| ﹣λ |成立,则向量 的夹角为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形内接于同一个直角三角形ABC中,如图所示,设,若两正方形面积分别为=441=440,则=______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:

(1)平面EFG∥平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn= ,n∈N* , 其中c为实数.
(1)若c=0,且b1 , b2 , b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直角梯形中,分别是上的点,,且(如图①).将四边形沿折起,连接(如图②).在折起的过程中,下列说法中错误的个数是( )

平面

四点不可能共面;

③若,则平面平面

④平面与平面可能垂直.

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为数列{an}的前n项和,Sn=(﹣1)nan ,n∈N* , 则
①a3=
②S1+S2+…+S100=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4﹣4:坐标系与参数方程)
在直角坐标系xOy中,椭圆C的参数方程为 为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为 为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为

查看答案和解析>>

同步练习册答案