【题目】根据平面向量基本定理,若
为一组基底,同一平面的向量
可以被唯一确定地表示为
=
,则向量
与有序实数对
一一对应,称
为向量
的基底
下的坐标;特别地,若
分别为
轴正方向的单位向量
,则称
为向量
的直角坐标.
(I)据此证明向量加法的直角坐标公式:若
,则
;
(II)如图,直角
中,
,
点在
上,且
,求向量
在基底
下的坐标.
![]()
【答案】(I)见解析.(II)
.
【解析】试题分析:( I)利用平面向量的坐标运算即可证明结论成立;
( II)根据几何性质得出
,用
、
表示
即可;根据几何性质得出
,再用
、
表示
即可.
试题解析:
(I)证明:根据题意: ![]()
![]()
∴
,(4分)∴
.
(II)解:法一(向量法):根据几何性质,易知
,
从而
,所以
,
化简得:
,所以
在基底
下的坐标为
.
法二(向量法):同上可得:
,所以
.
上法也可直接从
开始∴
.
法三(向量法):设
,则
利用
共线可解得.
法四(坐标法):以
为坐标原点,
方向为
轴正方向建立直角坐标系(以下坐标法建系同),则
,由几何意义易得
的直角坐标为
.
设
,则
=
,又知
,则由
三点共线易得
.
法六(坐标法):完全参照《必修4》P99例8(2)的模型和其解答过程,此处略.
法七(几何图形法):将
分解在
方向,利用平几知识算出边的关系亦可.
法八(向量法):设
,则
①;
由
②,由①,②解得
.
所以
在基底
下的坐标为
.
科目:高中数学 来源: 题型:
【题目】空气质量问题,全民关注,有需求就有研究,某科研团队根据工地常用高压水枪除尘原理,制造了雾霾神器﹣﹣﹣雾炮,虽然雾炮不能彻底解决问题,但是能在一定程度上起到防霾、降尘的作用,经过测试得到雾炮降尘率的频率分布直方图:
若降尘率达到18%以上,则认定雾炮除尘有效.![]()
(1)根据以上数据估计雾炮除尘有效的概率;
(2)现把A市规划成三个区域,每个区域投放3台雾炮进行除尘(雾炮之间工作互不影响),若在一个区域内的3台雾炮降尘率都低于18%,则需对该区域后期追加投入20万元继续进行治理,求后期投入费用的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设z1 , z2是复数,则下列命题中的假命题是( )
A.若|z1﹣z2|=0,则
= ![]()
B.若z1=
,则
=z2
C.若|z1|=|z2|,则z1
=z2 ![]()
D.若|z1|=|z2|,则z12=z22
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0)左、右焦点分别为F1 , F2 , A(2,0)是椭圆的右顶点,过F2且垂直于x轴的直线交椭圆于P,Q两点,且|PQ|=3;
(1)求椭圆的方程;
(2)若直线l与椭圆交于两点M,N(M,N不同于点A),若
=0,
=
;
①求证:直线l过定点;并求出定点坐标;
②求直线AT的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.
(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?
(2)每名学生都被随机分配到其中的一个公园,设X,Y分别表示5名学生分配到王城公园和牡丹公园的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列和数学期望E(ξ)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】计划在某水库建一座至多安装
台发电机的水电站,过去
年的水文资料显示,水库年入流量
(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,不足
的年份有
年,不低于
且不超过
的年份有
年,超过
的年份有
年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来
年中,设
表示流量超过
的年数,求
的分布列及期望;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量
限制,并有如下关系:
年入流量 |
|
|
|
发电机最多可运行台数 | 1 |
|
|
若某台发电机运行,则该台年利润为
万元,若某台发电机未运行,则该台年亏损
万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com